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1. Introduction and Nomenclature

The linear-quadratic-gaussian (LQG) compensator [1-3] has been developed to facilitate the

design of control laws for multi-input multi-output (MIMO) systems. An LQG compensator mini-

mizes a quadratic performance index and (under mild conditions) is guaranteed to yield an internally

stable closed-loop system. Unfortunately, however, the minimal dimension of an LQG compensator

is almost always equal to the dimension of the plant and can thus often violate practical implemen-

tation constraints on controller order. This deficiency is especially highlighted when considering

control-design for high-order systems such as flexible space structures. Hence, a very relevant axea

of research is the development of methodologies that will enable the design of optimal controllers

whose dimension is less than that of the design plant (i.e., reduced-order controllers).

Two main approaches have been developed to tackle the reduced-order design problem. The

first approach attempts to develop approximations to the optimal reduced-order controller by re-

ducing the dimension of an LQG controller [4-11]. These methods are attractive because they

require relatively little computation and should be used if possible. Unfortunately, they tend to

yield controllers that either destabilize the system or have poor performance as the requested con-

troller dimension is decreased and/or the requested authority level is increased. Hence, if used in

isolation, these methods do not yield a reliable methodology for reduced-order design.

The second approach attempts to directly synthesize an optimal, reduced-order controller by

a numerical optimization scheme [12-25]. Almost all of these schemes are parameter optimization

approaches; that is, they represent the controller by some parameter vector and attempt to find

the vector that optimizes the cost functional. Unfortunately, most of these schemes have only

local convergence properties and hence have the potential of failure if the initial controller is not

"close" to the optimal controller. One exception is the homotopy algorithm described in [20,25]. A

homotopv allows an initial controller to be deformed gradually into the desired optimal controller

by following a homotopy path. These schemes are paxticulaxly useful because they have global

convergence properties. Hence, this algorithm does not require the initial controller to be neax

the optimal controller. The algorithm is based on solving a set of "optimal projection" equations

[26,27] that are a characterization of the necessary conditions for optimal reduced-order control.

Unfortunately, the algorithm has sublinear convergence properties and the convergence slows at

higher authority levels and may fail.

This volume describes a new homotopy algorithm for discrete-time systems which has been
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implemented in MATLAB. The homotopy algorithm is based on a parameter optimization for-

mulation. This algorithm shares the global convergence properties of the homotopy algorithm of

[20,25] but potentially has quadratic or superlinear convergence rates. The results reported here

may offer the foundation for a reliable approach to optimal, reduced-order controller design.

Nomenclature

Y>Z

Y>Z

zij,Zi,_ or Z(i,j)

L

Z#

z½

trZ

IIZlIA

vec(.)

E(id)
t'r_Xn

2

Y*Z

Y/z

x = A\b

Nm

Y - Z is nonnegative definite

Y - Z is positive definite

(i,j) element of matrix Z

r x r identity matrix

the group generalized inverse of the square matrix Z

satisfying rank Z = rank Z 2 [28,29]

the (unique) nonnegative definite square root of Z (Z_ Z½ = Z),
zmzT>_o

trace of square matrix Z

absolute norm of matrix Z (HZIIA = maxi5 I zij I)

the invertible linear operator defined such that

= ...%] , S

where sj E IRp denotes the jth column of S.

the m-dimensional column vector whose ith element

equals one and whose additional elements axe zeros.

the m x n matrix whose (i,j) element equals one

and whose additional elements are zero (= e_ )e_ )T).

the m x m matrix whose i th row has all unity

elements and whose additional rows are zero.

for the square matrix Z, Z is the identically

dimensioned matrix defined by _'ij = z,.

Hadaxnard product of Y and Z([yozij] )

(Y and Z must have identical dimensions.)

matrix whose (i,j) element is yij/z 0

(Y and Z must have identical dimensions.)

(MATLAB notation)

x is the least squares solution to Ax = b

m x m matrix having unity elements (i.e., Nm,ij = 1)

matrix whose ith row is given by the row vector
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[Z]col-j

Z(k,:)

Z(:,k)

xYz(k, :)

xYz(:,k)

Zll z12 ]
SYM Z22 ]
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x T and whose additional rows are zero. (The size of

the matrix is understood from the context)

matrix whose jth column is given by the column vector x and whose

additional columns are zero. (The size of

the matrix is understood from the context.)

k th row of the matrix Z

(MATLAB notation)

k th column of the matrix Z

(MATLAB notation)

k th row of the matrix XYZ

k tb column of the matrix XYZ

partitioned symmetric matrix whose (1, 1), (2,2) and (1,2) matrix

partitions are as given.
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2. Optimal Reduced-Order Discrete-Time Dynamic Compensation

Consider the discrete-time system

Harris Corpor.tion

(2da)

(2ab)

where x E IR n" , u E IR n" , y E IR n', Wl E IR r'" is a white noise disturbance with covariance

Vr> 0, w2 E IR '_' is white observation noise with covariance V2 > 0, and wl and w2 have cross

covariance V12 E IR '_" x,,. If D = 0, we desire to design a fixed-order dynamic compensator,

.c(k + 1)= Ac.o(k)+ Boy(k)

_(k) = -Coco(k)- Doy(k),

(2.2a)

(2.2b)

or if D _ 0, we desire to design a fixed-order dynamic compensator

• c(k + 1) = Ao_c(k) + Boy(k)

_(k) = -c0_o(k)

(2._)

(2.3b)

which minimizes the steady-state performance criterion

fl(Ac, Bc, C¢, De) = lim E[xW(k)Rlx(k)+ 2zT(k)Rp.u(k) + uT(k)R2u(k)] (2.4)
k .-.* oo

where zc E IR n', nc < nz, Rx = R T > O, and R2 = R T > 0. We will call this problem

the optimal reduced-order dynamic compensation problem for discrete-time systems.

The closed-loop system corresponding to (2.1) and (2.2) or (2.1) and (2.3) can be expressed as

_(k + 1) = _i_(k) + _(k) (2.5)

where

[_o(k) ' _(k) = [ Bow_(k)

_,= [A-BD,C -BCc ] (2.7)BcC Ac- BcDC_

and it understood that either D of D_ is identically zero in (2.6) and (2.7). In addition, the cost

(2.4) can be expressed as

..7(A_,Bc, C¢, D_) = lJm E[_W(k)k_c(k)] + E[wT(k)DT R2Dcw2(k)] (2.8)
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where

and

k [kl1 k12

._ _ pT/3TDTRll " Ra "." _c ."."',,2- Ra2DcC + cTDTR2DcC

R12 A_ -R12Cc "_- cT DT R2Cc

R22 " T= Cc R2Cc.

(2.9)

(2.10a)

(2.10b)

(2.1Oc)

To guarantee that the cost J is finite and independent of initial conditions we restrict our

attention to the set of stabilizing compensators,

,-go_- {(Ac,B:,Cc, Dc): A is asymptotically stable). (2.11)

Assume (Ac, Be, Co, Dc) E Sc and define Q and/3 to be the closed-loop steady state covaxiance and

its dual, i.e.,

0 ---- _¢jT + _,, (2.12)

/_ _-- ,_T_ + k (2.13)

where

and

_T V22] (2.14)

Vl1 _= V1 - BDcV w - V12DTc BT + BD:V2D TBT

f/12 _ V12 BT - BDcV2 BT

V22 =_BcV2 BT.

(2.15a)

(2.15b)

(2.a_c)

Then, the costcan be expressedas

ff(Ac, B_,Cc,Dc) = tr(_)k) + tr(DT R2DcV2).

Also, ]5 and Q can be expressed in the partitioned forms

P12] bue m.,x.,

+P= o,,]LQI+ _.,., , 01, e m" x,,+

(2.16)

(2.17)

(2.18)
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Notice that (_11 is the covariance of the plant states, 022 is the covariance of the compensator

states and Q22 is the cross-covariance of the plant and controller states.

Since the value of J is independent of the internal realization of the compensator, in what follows

we will further restrict our attention to minimal compensators. Hence, we define the admissable set,

,5+ = {(At,Be, Co, De) E S: (At, Be)is controllable, (At, Co)is observable}. (2.19)

Note that S + is an open set.

Optimal Projection theory can be used to characterize all admissable extremals of the optimal

reduced-order dynamic compensation problem for discrete-time systems. Before presenting the

main theorems we present an important Lemma and some definitions which are useful in stating

the main results of optimal projection theory. The lemma also gives many properties of the optimal

projection solution (see Theorem 2.1).

Lemma 2.1 [1]. Suppose 0 E IR n'x"" and t5 E lit "*'x""

definite and rank 0t 5 = no. Then, the following statements hold:

(i) 0/5 is diagonalizable and has nonnegative eigenvalues.

(ii) The n_ x nx matrix

7."=0/5(0/5)*

is idempotent, i.e., 7.2 = 7. (7. is an oblique projection) and

are symmetric and nonnegative

(2.20)

rank r = no. (2.21)

Thus, if 7. is given by (2.18), then there exists a nonsingular matrix W E ]R "**x'*" such that

(iii) There exists G, F E lit '_'x'** and nonsingular M E lit'*" x'*, such that

OP=GTMF

FG r = I m.

(2.23)

(2.24)

(iv) If G, C and M satisfy property (iii) then

rank G=rank /'=rank

GASD-HADOC October 1993
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({_p)# = GT M-11" (2.26)

r = GTr (2.27)

rG T=G T, 1"r=r. (2.28)

(v) The matrices G, P and M satisfying property (iii) are unique except for a change of basis in

IR'_", i.e., if G _, F _ and M _ also satisfy property (iv), then there exists nonsingulax Tc E IR TM x,.

such that G _ = TTG, 1"1 = Tc11`, M t = T_-ZMTc. Furthermore, all such M are diagonalizable

with positive eigenvalues.

(vi) Finally, if rank {_ = rank /5 = rank {_/5 = no, there exists a nonsingular transformation

W E IRn. xn. such that

=w-T[ fl0 00]W-1 (2.29)/5

where f_ E IR TM x_ is diagonal and nonsingular. In addition,

/5 = TT/5 =/sT = TT/ST

= _Q= Q_ = _0=_.

(2.31)

(2.32)

Remark 2.1. The transformation W in statement (vii) meets the requirements of statement

(fi).

Definition 2.1. A triple (G,M,r) satisfying property (iii) of Lemma 2.1 is a projective

factorization of {_/5.

To optimize (2.8) subject to the constraint (2.12) we form the Lagrangian

£(Ac, Bc,Cc, Dc,/5,Q) _ tr[0k +/5(AOA T + Y- 0)-t- DTR2DcV2] (2.33)

where 15 E IR (_'+n')×(_'+n') is the Lagrange multiplier. The stationary conditions are then given

by
0£ 0£
---: = O, - - 0 (2.34)
oP OQ

2-4 October 1993 GASD-HADOC
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Definition 2.2. A compensator (Ae,Bc, Cc, Dc) is an extremal of the optimal reduced-order

dynamic compensation problem for discrete-time systems if it satisfies the stationary conditions

(2.32).

Definition 2.3. A compensator (At,Be, Co, De) is an admissible extremal of the optimal

reduced-order dynaxaic compensation problem for discrete-time systems if it is an extremal and is

also in S + .

l_mark 2.2. The optimal (admissible) reduced-order dynamic compensator for discrete-time

systems (if it exists) can be found by computing all admissible extremals.

We can now state in the form of two theorems the basic result of Optimal Projection theory,

namely a set of necessary conditions which characterize admissible extremals of the optimal fixed-

order dynamic compensation problem. For convenience define

P, _ BTpA + RT2, Qa _- AQC T + V12 (2.36a, b)

R2,a _- R2 + BT pB, V2,a _- 1"2 + CQC w. (2.37a, b)

Theorem 2.1 [3]. Suppose D = 0 and (Ac,Bc,Cc,Dc) is an admissible extremal of the

optimal reduced-order dynamic compensation problem for discrete-time systems. Then, there exist

nonnegative-definite matrices P,Q, 15 and (_ such that Ac, Bc,Cc and D_ are given by

A_ F(A -1 v-a -1 -1= - BR2,aP,, - Q,, 2,,, + Q,,V_,_ DR2,,,P,, - BDcC)G T (2.38)

B¢ = F(Q,,VZ, _ + BD_) (2.39)

Cc -. -1(R2,,,pa + D_C)G T (2.40)

= v,-' (2.41)Do R;,'_(BTPAQCT + RT_OC_ + B TPvl_ _,.

for some projective Iactorization (G, M, F) of 1_, 15 such that the following conditions are satisfied:

P =ATpA + R1 T -1- P_ R2,.P.

+ rT[(A_Q.VZ,_c)T/5(A-QoV_C)+(p_ + R_,.DcC)TR_,_(Pa+ R_,.D_C)r± (2.42)

-1 T
(2 =AQA T + V1- QoV2,oQ.

+ r±[(A -BR;,_P.)O.(A- BR_,_.P.) T +(Q_+ BDcV2,.)V2:J(Q.+ B1)W_,.)T]r T (2.43)

/5 =rT(a _ Q_ V2-2 c)T /5( A - Q_ V2.2 C)r

+ vT(Pa + R2,aDcC)TR;,_(P,_ + R2,aDcC)r

(_ =r(A- BR2.1,,Pa)(_(A - BR_,I,P_)Tr T

+ r(Q_ + BD_V_,_)V_,_(Q_ + BD¢V2,a)Tr T

GASD-HADOC October 1993
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rank P = rank{0= rank{0P= .0 (2.46)

V = ({0/5)({0p)# (2.47)

Theorem 2.2 [3].Suppose D # 0 and (Ac,Bc,Cc) isan admissibleextremal of the opti-

mal reduced-orderdynamic compensation problem for discrete-timesystems. Then, there exist

nonnegative-definitematrices P,Q,/5 and {0 such that Ac,Bc and Cc are given by (2.38)-(2.40)

with Dc = 0 forsome projectivefactorization(G, M, F) of {0/5such that conditions(2.42)-(2.47)

axe satisfiedwith Dc = 0.

Remark 2.3. Theorem 2.1 isa modificationof earlierresults[2,4].The primary difference

isthat the/5 and {0in Theorem 2.1 satisfythe rank conditions(2.46),which parallelsthe corre-

sponding continuous-timetheory[4,5],whereas the/5 and {0in[2]and [4]do not satisfytheserank

conditions.

The followingcorollarycharacterizesthe optimal,full-order,discrete-timecontroller.

Corollary 2.1. Ifnc = nz, then one can choose r = F = G = In,,such that r± = 0 and

(2.38)-(2.46)reduceto

Ac = A- BCc - BcC - BDcC

V-1Bc= Q,, 2,a - BDc

Cc -1= R2,aP_ - D_C

Dc = R_,_(B TPAQC w + RT2QC w + B TPV12)V2. _

(2.48)

(2.49)

(2.50)

(2.51)

where

T -1
P = A'rpA + R1 - Pd R2,_P_

Q AQA T + V1 -1 T= -Q.V_,_Q_

/5 = (A - QaV2-,_c)Tp(A- QoV_-,_C)

+ (P,_ % R2,oDcC)TR_,_(Pa + R2,.D_C)

{0 = (A - BR_P.){0(A- BR_':P_) w

+ (Q,, + BD_V2,,,)VZ,2(Q,_ + BD_V2,.) T

(2.52)

(2.53)

(2.54)

(2.55)

2-6

rank/5 = rank {0 = rank 0/5 = n_.

October 1993
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Remark 2.4. Condition (2.56) requires that the LQG controller (Ac, Bc, Cc, De) have minimal

order nx. Also, P and {_ are not needed to compute the controller but are the closed-loop grammians

to be used in balanced controller reduction.

Remark 2.5. Notice that in the full-order case (i.e., nc = n_:), without loss of generality

one can choose r = G = /' = In. and (2.42) and (2.43) reduce to the standard regulator and

observer Riccati equations and (2.38)-{2.41) yield the usual LQG expressions. It can be shown

that (2.44)-{2.46) are equivalent to the requirement that the controller (Ac, Be, Co) be minimal.

Theorem 2.4 [6]. Suppose there exists nonnegative definite matrices Q, P, (_ and j5 satisfying

(2.40)-(2.45) and Ac, Pc, Cc and Dc satisfy (2.36)-{2.39). Then, the compensator (Ac, Be, Ce) is

an extremal of the optimal fixed-order dynamic compensation problem. Furthermore the following

are equivalent:

(i) fi, is stable

(ii) (,zi, Q½)is stabilizable

(iii) (4,/_½) is detectable.

In addition,

(A_,Bc) is controllable ¢=_ Ac + BcCG T is stable

(At,Co) is observable ¢=:* A_ + FBCc is stable.

In the homotopy algorithms to be subsequently defined the optimal projection equations (2.42)--

(2.45) due to their relationship to standard LQG equations can be used to give insights into the

development of initializing controllers. However, the homotopy algorithms will be based directly

on the gradient of the cost functional.
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3. Review of Homotopy Methods

A "homotopy" is a continuous deformation of one function into another. Over the past several

years,homotopy or continuationmethods (whose mathematical basisis algebraictopology and

differentialtopology [1])have receivedsignificantattentionin the mathematics literatureand have

been appliedsuccessfullyto severalimportant problems [2-7].Recently,the engineeringliterature

has alsobegun to recognizethe utilityof thesemethods forengineeringapplications(seee.g.[8-

10]).The purpose of thissectionisto providea very briefdescriptionof homotopy methods for

findingthe solutionsofnonlinearalgebraicequations.

The readerisreferredto [7,8,11,12]foradditionaldetails.

The basic problem is as follows. Given set O and (I, contained in IR '_ and a mapping F : O _ ,I,,

find solutions to

F(0) = 0. (3.1)

Homotopy methods embed the problem (3.1)ina largerproblem. In particularletH :O x [0,1]--*

IRn be such that:

1) H(0, 1) = F(0). (3.2)

2) There exists at least one known 80 E IR '_ which is a solution to H(.,0) = 0, i.e.,

Z(Oo,O) = 0. (3.3)

3) There exists a continuous curve (0(A), A)in IR '_ x [0,1] such that

H(0(A), A) = 0 for A E [0, 11 (3.4)

with

(0(0),0)= (80,0). (3.s)

4) The space 0 x [0,1]has a differentialstructureso that the curve (0(A),A) isdifferentiable.

A homotopy algorithmthen constructsa procedure to compute the actualcurve a such that the

initialsolution0(0)istransformedto a desiredsolution8(1)satisfying

0 = H(0(1), 1) = F(e(1)). (3.6)

Differentiating H(O(A), A) = 0 with respect to A to obtain Davidenko's differential equation

OH dO OH
o-V + = o. (3.7)
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Together with 0(0) -- 00, (3.7) defines an initial value problem which by numerical integration from

0 to 1 yields the desired solution u(1). Some numerical integration schemes are described in [11,12].
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4. The Homotopy Map and It's Jacobian

If we define vec(Ac)

0 _a vec(Bc)
vec(Cc) '

vec(Dc)

then the cost functional of Section 2 can be expressed as if(O).

section is based on finding 0 satisfying

It is useful to recognize that

OJ
o = f(o) _--_(o).

(4.1)

The homotopy defined in this

(4.2)

[ veC_A c "

Vy(e)T,, off /vec_-_TB"
= 00 - /vec_c, (4.3)

Lvec

Expressions for the partial derivatives o_I_ _ o__ and _ are derived in Appendix A. Here,OAc ' 8B, ' OCt ' OD,

we cite only the final results. First, we assume that P, Q and 2 satisfy

(4.4)

(4.5)

(4.6)

t3 = _T/5,_ + /_

0 = A0AT+

2 = 0AT/5

and note that/5, 0 and 2 have the partitioned forms

r/511 /512] o _. _Q-11 0212 1 2 [Zll 2, I/5-- L/55 /5_ ' LQT_q_j' = ,_ ,_J' (4.7)

where the (1.1) and (2.2) blocks of each matrix are respectively n x n and nc x no. With this in

mind, the cost derivatives are given by

(4.8)

(4.9)

(4.10)

(4.11)

0__ff_fl= 2(_RT _12 + R_DcCQ,12 + R2Cc0,22
OCc

-I- BTzT 1 T T -T- D Bc Z22)

0.7 _ 2(_R_2_),,cT + R2DcC01,C T + R_ccOT cT
OD_

- BT/5,1V,: + BTpnBD_V: - BT/SI2BcV_

- BTzT1cT + R2DcV2).
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Definition of the homotopy map h(O, A)

To define the homotopy map we assume that the plant matrices (A, B, C, D), the cost weighting

matrix (R1,R2,R12) and the disturbance matrices (V1,V2,V12) are functions of the Homotopy

parameter A E [0, 1]. In particular, it is assumed that

c(_) D(_) = Co Do CS DS - Co Do '

where

and LR,o and LR,I satisfy

where

and Lv,o and Lv,! satisfy

RI(A) R12(A)]= LR(A)LT(A)
RT2(_) R_(_) ]

LR(A) = LR,o+ _(LR,! - LR,o)

(4.13a)

(4.13b)

RI,O
LR,oLT,o = LRT2,o

I. 12,1

R12,OR2,o] (4.13c)

R12,IR2,I] ' (4.13d)

y_(_) yZ(_)J

Lv(A) = Lv,o + _(Lv,! - Lv,o)

(4.14a)

(4.14b)

LvoLT, o [ VI,o V12,0 ] (4.14c)= lVT,o V_,0J

[ Vl,! v,_,!]LD L_,! (4.14d)
= _,I V2,o7"

Note that (4.12)-(4.14)imply that A(0) = Ao and A(1) = AI, B(0) = Bo and B(1) = B!, etc ...

and it is understood that A!, BI,... were referred to previously simply as A, B, .... The change in

notation is simply for convenience.

The homotopy map h(O, A) is defined by

(4.15)

rvec(SSA<(0,_))
/ vec(/iB<(_,_))

h(0, A) = /vec(Hv:(0'A))

Lvec(HD, (0, A))

October 19934-2 GASD-HADOC



where

H_<(0,_)= 22_

+2_C T _T_T_T,c._22 s.-,c ...,

Hc,(O,X) = 2(-R_201_ + RiDcCOi2 + R2Cc(_2

BT2T rtT.T_T

HD,(O,A)- 2(--RIT2{0llC T _" RiDcC¢ll CT + R2CcQ1T2 CT

- BTpnV12 + BTpnBDcV2 - BTp12BcV2

- BT2_c T+ R.DcY_).

H6rris Corporitiea

(4.16)

(4.17)

(4.18)

(4.19)

The Jacobian of the homotopy map

We now consider that computation of vh(O, x)T, the Jacobian of h(O, )_). Note that

Oh Oh]

Recalling that 0 is defined by (4.1), such that for some integers k and t, 0j is given by

(4.20)

Oj ---- ac,kt, Oj m bc,kt, Oj ---- cc,kt, or Oj = dc,kl. (4.21)

It follows from (4.6) that _0h is of the form

. vec( oa_.kt H A, ) vec(_HA,), vec( _ O--_-'O---H A, ) . . . vec( _z-_:- H A¢ )• • • • • • • OCc,kl v_c,K !

Oh .vec(o-_,HB,)...vec(ab_._HB,). vec(_--_HBc), vec(_--r_--° HB,)
• • _¢,R l , " • OC¢,_l " • uo.c,k t

0--0 = vec(_-:L.:-Hc,)...vec(ob_.k Hc,). vec(o_-_ Hc,)...vec(_Hc<)• • • Oa¢,KI , " • c,kl

and _ can be expressed as

(4.22)

rvec(£_A:)]
Oh ive_(£H_:)/

= /vec(£Ssc<)/" (4.23)

Lvec(°Ho,)J

Below, we develop explicit expression for the derivative terms appearing on the right hand sides of

MU ) ="OM (4.24)
00j

,, OM (4.25)
O_

(4.22) and (4.23). We use the notation
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Differentiating (4.4)-(4.6) with respect to 0j yields

_(j) = _T_(j)_ ._ (_(j)T_ + _T_(j) + _(j))

_(j) ._ /]0(j)_T + (_(j)¢_T + _(_(j)T + ]_(j))

_(j) = _(j)t_Tf _ + _(j)T f_ + _T_(j)

(4.26)

(4.27)

(4.28)

where expressions for the derivatives/](J),/}(J) and V(J) are given by (B.20)-(B.28) of Appendix B.

Similarly, differentiating (4.4)-(4.6) with respect to A yields

j_ _. j]T_,_ + (_Tpt] -I- _T/_t] ._ h) (4.29)

__ j]_T .j_ (_._T + _0 _ ._ _,) (4.30)

= _Tt 3 + _._T/5 + _/])3 (4.31)

where expressions for A, R and V are given by (B.29)-(B.33) of Appendix B.

Before presenting the desired derivative expressions we define

H_, (Z(J)) = 2Z_ )T (4.32)

H'B,(P(J), _(j)) = 2(15_)T VI2 - "]2f_(J)TDn_c"V2 + P(_)BcV2

_(J)T f'T _(J)T pTDT/ (4.33)+ "_12 _'_ -- 't"22 Vc _" /

HC,(o(J), _(j)) -_-"k--'t,2'_12°(DT f_(J) __ _2 _cCQ_ )" _- 1_2(_'c_,_22-_ _(J)

DT_(J) T DTDT_(J) T-_ _21 -_ "_c"22 ) (4.34)

'3/ DT f_(J)f,T -(J) T D /" ,,_(J)TcT )H_, (P(J), Q(J), Z (_)) •"_-"_12'_1, "-" + R2DcCQ,1 C + _2'-_c'_,2

RT_(j)Tf'T_ (4.35)-- "" "11 "_ /

Notice that the right hand sides of (4.32)-(4.35) are essentially identical in form to the right

hand sides of (4.16)-(4.19). The difference is that /5,_, and Z have been replaced by /5(j),_(j)

and Z(J) and the last term (2R2DcV2) in (4.19) has no counterpart in (4.35).

Derivatives with Respect to brM

Differentiating (4.16)-(4.19) with respect to b_.kt(= Oj) gives the following.

o /A, _
Obc,kt

^_. _( k,t) .o Bo _ 2o)) +
Obc,kt
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OHco , (0o)2(")- _-nT_('*)2_
OBc,kt -- Hc_ --- --nwxn_

ou_,= nb.@(,¢(,2(')- 2B_P,E(._'2..V_.
OBc,kt

(4.38)

(4.39)

Derivatives with Respect to c._,

Differentiating (4.7)-(4.9) with respect to 8j(= CcM) gives the following.

OHA_____, = litA.(_(D )

_Cc,kt

DHB. _. H_B.(F(j) 2(j)) _ 9_T _-,(t,k) mT_ 2(Q(j)Z_ + QZQ(j))Be
OCc,kt _"-'22 *'J.. X n_ a._

(4.40)

(4.41)

-- E(k't) Q22OHc. H_.(0 (j) , Z(J)) + 2R2-n. ×n.

CgCc,kt

- " r.(k, I) I_T C ToHHo.= HHk(p(,),0(j)2o)) + 2R_..x.._,2
OqCe,kt

(4.42)

(4.43)

Derivatives with respect to d_ _

Differentiating (4.7)-(4.9) with respect to dc,kt gives the following.

0li., _ n' (FJ))
Odc,kt A_

OHB_ t (p(j) 2(j)) _ 9_:,TDp(k, I)
Odc,kt -- HB" "" 12_'*'*n'xn*V2

cOHc, , ((_(j), 2(j)) 2R:E(k,tx) C012
Od_,kt - Hc" +

(k,t) - C T DT5 piT(k, 1) If2aHHv__ lik(p(_.),_(j) F_))+2(R2E,_.x,_ CQ. +- **l-_,,.x,,,
Odc,kt

V( _,t)
+ R2_.. x..V2).

(4.44)

(4.45)

(4.46)

(4.47)

Derivatives with Respect to A

Differentiating (4.7)-(4.9) with respect to A gives

OH A,

cOA

OHB,

OA

- li'A,(z)

- II'B,(P,Z )

+ 2(/5T%2 -- ['T:BDcV2 - pTBDc% + P22B¢%)

+ 25¢ • - 2_cyb _)
: L

- Hb,(Q,Z)

(4.48)

(4.49)
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+ i_T2_ "_ _-_- D B_ Zn) (4.50)

(4.51)

where from (4.12)-(4.14)

where

where

[Ad = cs Co cs Co

i:, ih2] I;nL'RT

i_r_ & J =

l]a = Lad - LR,o

25 ] = fvI;v T

Lv = Lv,! - Lv, o.

(4.52)

(4.53a)

(4.53b)

(4.54a)

(4.54b)

The homotopy Jacobian can now be computed using (4.20) with (4.22) and (4.23) and (4.32)-

(4.51). Note that the primary computations involve the computation of the solutions of the Lya-

punov equations (4.26), (4.27), (4.29) and (4.30). Significant computational savings can be made

by solving these Lyapunov equations in a basis in which the ,4 matrix is diagonal (or nearly diago-

nal). This requires transforming the corresponding forcing terms into this basis. But it is seen by

(B.20)-(B.33) of Appendix B that these forcing terms are very sparse. Hence this transformation

does not have to be expensive. In addition, it is required that the solutions of the Lyapunov equa-

tions be transformed into their original basis before substituting into the expressions (4.32)-(4.51).

A close examination of these expressions shows that for problems in which n_ << n_,n,, << nx
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and/or nc << nz significa_nt computational savings can be made by not actually performing the

matrix multiplies to transform the solutions into their original basis until after substituting the

transformations into (4.32)-(4.51). Appendix H gives the details of efficient computation of He for

the corresponding continuous-time problem. A nearly identical procedure has been implemented

for the discrete-time problem considered in this report.
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5. Reduction of the Dimension of the Controller Parameter Vector (6)

The homotopy function H(9, _), described earlier, was defined to solve the H2 optimal reduced-

order dynamic compensation problem for discrete-time systems. The vector 0 was defined such

that it contained each of the elements of the controller matrices, Ac, Bc and Co. However, for

computational efficiency it is desired that @be as small as possible. Hence, we desire to represent

the controller matrix with the fewest parameters possible (i.e., we desire 8 to have the smallest

dimension possible). The minimal number of parameters Pmin with which a compensator can be

represented is given by [1,2]

Pmin -- nc(nu + ny) (5.1)

One canonical form which allows representation of a controller with a minimal number of

parameters is the modal form described in [3]. This form will be called here the Second-Order

Polynomial (SP) form. For this parameterization a triple (Ac, Bc, Cc) has the following structure.

Ac = block- diag{Ac,l,Ac,._ ..., Ac,r) (5.2)

where Ac,i E II:L_x2 for i E {1,2,...,r) and each Ac,i (with the exception of Ac,r if the row

dimension of Ac is odd) has the form

Ac,i = a(O! aO)
Clt Cml J

to allow for either a complex conjugate set of poles or two real poles. Bc is completely full and

Cc = [Cc,1, Co,_,...,Co,_] (5.4)

where Cc,i has the form

cc, = . (5.5)

The controller canonical form described in [4,5] also allows representation of a controller with

a minimal number of parameters. For single-input, single-output (SISO) systems in controller

canonical form the Ac matrix is a companion matrix. In particular, Ac has the form

[!100010!]Ac= 0 0 1 . (5.6)
• ° .

* * * .-.
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In addition,

[i]Bc = (5.7)

and Ce is completely fall. A dual form of the controller canonical form is the observable canonical

form[5].

It is also possible to represent the controller in a basis where the number of free parameters p

satisfies

Pmin < P < Pmax _ Re(Re "_" l%u Jr l'_y). (5.8)

One such basis is the tridiagonal basis [7-11] in which the controller state matrix is constrained to

have nonzero elements only on the diagonal, the super-diagonal and the sub-diagonal. That is,

[: ]
* * 0

Ac = * * "'. (5.9)

Bc and Cc are completely full. For this form the number of free parameters is given by

P = Pmin "{" (3no - 2)

A common feature of each of the above bases is that they are described by simply constraining

certain elements of the controller (or plant) matrices to constant values (e.g., 1 or 0) while allowing

the remaining parameters to have arbitrary values (Ac, Bc, Co). Hence, the corresponding parameter

vector (0p), gradient vector (J0,p) and Hessian matrix (H,,p) are given by

= r0 (5.10)

Je,p = FJe (5.11)

He,p = FHeF T (5.12)

where r is an elemental matrix (i.e., each row has only one nonzero element and this element has

unity value). It should be noted here that He,p can be computed more efficiently than shown in

(4.64). Since it is not necessary to construct the large Hessian H0 to compute the smaller Hessian

He,p.
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6. Overview of the Homotopy Algorithm

This section describes the general logic and features of the homotopy algorithm for H2 opti-

mal reduced-order control. It is assumed that the designer has supplied a set of system matrices,

S I = (A I, HI, CI, DI, Hi,l, R2,I, 1/1,1, V2,I, V12,I) describing the optimization problem whose so-

lution is desired. In addition, it is assumed that the designer has chosen an initial set of related

system matrices So - (A0, B0, Co, Do, R1,0, R2,0, V1,0, V2,0, Vx2,0) that has an easily obtained opti-

mal controller (At,0, Be,o, C_,0, D_,0) of order n_. The initial system So can be chosen to correspond

to a low-authority control problem as described in Appendix I since if Rll, or Vl,o axe of the appro-

priate structure and A0 is stable, the corresponding LQG controller is nearly nonminimal and can

hence be reduced to a nearly optima] n_horder compensator using, for example, balanced controller

reduction [1]. The reader is referred to Appendix I for additional details.

Below, we present an outline of the homotopy algorithm. This algorithm describes a predic-

tor/corrector numerical integration scheme. There are several options to be chosen initially. These

options are enumerated before presenting the actual algorithm. Notice that each option corresponds

to a particular flag being assigned some integer value.

Controller Basis Options:

basis = 0. No basis (i.e., all elements of the controller matrices are considered free.)

basis = 1. Tridiagonal Basis.

basis = 2. Second-Order Polynomial Form.

basis = 3. Controller Canonical Form.

Note that for basis = 0 or 1, p > Pmin while for basis = 2 or 3, p = Pmin.

prediction Scheme Options:

Here we use the notation that A0,A-1, and A1 represent the values of A at respectively the

current point on the homotopy curve, the previous point and the next point. Also, 0v' = dOv/dA

and is the solution of Davidenko's differential equation (4.7), rewritten here as

+ = O. (6a)

If p = Pmin, Ho,p is generally invertible, then 8_(A) is given exactly by

o',,(,x)= -i-Ho,pH:_.
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If p > Pmln, then He,r generally has rank Pmin and 0_,(A) is approximated by the least squares

solution of (6.2) or

[ 0010p = V r. ' UT (6.3)

where it is assumed the He,p has the singular value decomposition

= 0 V T, _0 E m p'''×pmi" (6.4)

Note that for p = Pmin (6.3) and (6.4) axe equivalent.

pred = 0. No prediction. This option assumes that 8p(A1) = 0p(A0).

pred = 1. Lineax prediction. This option assumes predicts 0p(A1 ) using only 0p(A0) and Op'(Ao).

In particular,

Op(/_,) -- Op(AO) -_-(A1 - )io)Opt(Ao) (6.5)

pred = 2. Cubic spline prediction. This option predicts 0p(A1) using Op(Ao), 0p'(A0), 0p(A_,)

and 0p'(A_,). In particular,

0p(A1) = ao + alA1 + a2A, 2 + a3Al 3 (6.6)

where ao, al, a2 and a 3 are computed by solving

ao al a2 a3] 1 0 1 0
A-1 1 Ao 1

A__, 2A_, A02 2A0
3 3A o

0p(_-l)'

=
0p(_o)

(6.7)

Note that if this option is chosen, then at the initial algorithm prediction step 0r(A_, ) and

0_,(,\-1) are not available, in which case linear prediction is used.

Correction Options:

Here we assume that the homotopy parameter has a fixed value A0. The vector 0p represents

the current approximation of the parameter vector at A = A0. Each of the options corresponds to

updating 0p using the formula

where

for some choice of G0,p.

0p .-- 0p + A0p (6.8)

AOp = -Ge,pJo,p (6.9)
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corr = 1. Newton correction. In this option, if p = Pmin,

Harris Corporstio=

G0,r = H0,p -1 (6.10)

while if p > Pmin,

Go,p = V(V3 + a2I)-IEu T (6.11)

where a is some (small) scalar and (U,V,E) denote the singular value decomposition of H0,p

such that

Ho,p = UEV T. (6.12)

It can be shown that if Gs,p is given by (6.11), then A0p minimizes

- [llH0,p 0r + +0pll2 a211AOrll2]. (6.13)

Hence, A0 r is essentially a "Newton correction" that is relatively insensitive to singularities or

near singularities in the Hessian, Ho,r.

corr= 2. Quasi-Newton correction. In this option, Go,r denotes the estimate of Ho-_ using

only gradient and cost information. For the algorithm presented here the BFGS inverse Hessian

update is used [2].

Outline of the Homotopy Algorithm

Step 1. If basis > 1, then transform the initial controller (At,0, Be,0, C_,0) to the chosen basis

and let 00,p be the corresponding vector of free parameters.

Step 2. Initialize loop = 0, A = 0, AA E (0, 1], S = So, 0r = 00,r and compute the cost J

and the cost gradient Jo,r corresponding to S and the controller described by 0r.

Step 3. Let loop = loop+l. If loop = 1, then go to Step 5. Else, continue.

Step 4. Advance the homotopy parameter and predict the corresponding parameter vector 0

as follows.

4a. Let Ao=A

4b. Let A = Ao + AA.

4c. If pred > 1, then compute 0_(A0).

4d. Predict 0p(A) by using the option defined by pred.
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4e. If the normalized gradient J,,pllG,,pll/A0p satisfies some preassigned tolerance, then

continue. Else, reduce A_ and go to Step 4b.

Step 5. Correct the current approximation 0p to the optimization problem defined by S using

the option defined by corr until the normalized gradient,

J,,pIIGs,pll (6.14)
A0p

satisfies some preassigned tolerance.

Step 6. If _ = 1, then stop. Else, go to Step 3.

The above algorithm assumes monotonicity of the solution curve as a function of the homotopy

parameter R. However, it is not difficult to modify the algorithm so that the variable parameter is

the arc length as discussed in [3,4] since this modification would still only require the computation

of H0 and Hx. The modified algorithm would not require monotonicity of the solution curve.

However, so fax in our computational experience the solution curve has always been monotonic.

Note that if p = Pmin and corr = 1, then the corrections of Step 5 correspond to Newton

corrections. Hence if the prediction tolerance used in Step 4 is sufficiently small, then, entering

Step 5, 0p will be close enough to the optimal value 0_ so that the quadratic convergence properties

of Newton's method [2] can be realized. In practice, this quadratic convergence property is not

always realized due to numerical ill-conditioning associated with the minimal parameterization of

the controller. This ill-conditioning is illustrated and discussed further (in the context of continuous-

time systems) in Appendix H.
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7. A Design Example and Some Rules of Thumb

This section illustrates the design of a reduced order compensator for an axial beam with

four disks attached as shown in Figure 7.1. This example has been considered in several previous

publications [1-7] and has become a standard benchmark example. The section closes with some

general rules of thumb that will aid the control designer in most efficiently utilizing this algorithm.

The basic control objective for the four disk problem is to control the angular displacement

at the location of disk 1 using a torque input at the location of disk 3. It is also assumed that a

torque disturbance enters the system at the location of disk 3. An 8th order discretized model of

the fourdisk plant with nominal performance weights and disturbance covariances is generated by

the function diskmod.

The design philosophy adopted here is that the scaling q2 of the nominal control weight R2

and the nominal sensor noise covariance V2 are simply design knobs used to determine the con-

troller authority. The system costs are computed assuming that Vz=O. This general philosophy is

actually motivated by insights into LQG theory. However, it will suffice here to simply note that

this philosophy was used successfully on two hardware experiments involving control design and

implementation [10-13].

It is now assumed that we are in the MATLAB environment. In what follows the reader is

walked through the design process for a 4th order controller. The command sequences are presented

after the prompt ">" and after the commands some of the resultant output is displayed. Explana-

tory text is interspersed to clarify the motivation of the command sequences and the interpretation

of some of the output.

We begin by using diskmod to generate the design plant and nominal weights and covariance.

>> diskmod

discretizing a, b, and vl

The following variables are now loaded into memory.
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_' who

Your variables are:

a c rl r2 vl v2

b d r12 ts v12

We choose to display numerical data using the following format.

format short •

We now begin the search for an authority level that will give us a nearly optimal controller by

balanced controller reduction. We commence this process by choosing the initial scaling q20 of R2

and V2 as follows.

q20 = .1;

We use dlqg to design an LQG controller and then check the eigenvalues of the product phat*qhat

to see if their is any gap between the 4th and 5th eigenvalues (ordered in descending order of

magnitude). Note that the warning after the call to dlqg in this case is not important.

_> [ac, bc, cc, dc, costslqg,phat, qhat] = ...

dlqd(a.b, c,d,rl ,q20*r2,rl2,vl ,q20*v2,v12,1) ;

Warning: Q is not symmetric and positive semi-definite

-sort (-e ig (phat*qhat))

a/is =

1. 3554e÷01

I.2377e+00

8.0067e-01

I.3682e-01

1.0451e-01

1. 7751e-02

1.0585e-02

4.9872e-03

Note that their is no gap between the 4th and 5th eigenvalues indicating that balanced controller

reduction will probably not yield a nearly optimal reduced-order controller. However to verify this

we will actually compute a 4th order controller using balanced controller reduction and compare

it's cost with that of the LQG compensator, which is contained in the vector costslqg.

>> [ac, bc, cc, dc] = balcred (ac, bc, cc, dc, phat, qhat, 4) ;

>cost s=dqcosts (ac, bc, cc, dc, a, b, c, d ,rl, q20*r2, r12,
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costslqg

costslqg =

2.1047e-02

costs

Costs z

v1,q20*v2.v12);

Harris Corporation

1.6027e-02 0 4.2135e-04 3.7495e-02

2. 5838e-02 2.0623e-02 0 4. 2135e-04 4. 6882e-02

The total cost of the LQG compensator is 3.7495e-02 while the cost of the reduced order controller

is 4.6882e-02. The vast differences in these costs is another indication that the reduced order

controller is not nearly optimal. We will now repeat the above process with a higher value of q20,

i.e. the LQG controller is of lower authority.

6.2018e-01

>> q20 = 10;

>>[ac,bc,cc,dc,costslqg,phat,qhat] = ...

dlqg(a,b,c,d,r1,q20*r2,r12,v1,q20*v2,v12,1);

Warning: Q is not symmetric and positive semi-definite

>> -sort(-eig(phat*qhat))

anS =

4.1835e÷02

2 1594e+00

5 6033e-01

4 3915e-01

4 6232e-02

3 7616e-02

4 4658e-03

4 4134e-03

>> [ac,bc,cc,dc] = balcred(ac,bc.cc,dc,phat,qhat,4);

>>costs=dqcosts(ac,bc,cc,dc,a,b,c,d,rl,q20*r2,rl2,vl,

q20*v2,v12);

>> costslqg

costslqg =

2.0046e-01 4.1697o-01 0

>> costs

COSTS =

2.7474e-03
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2.0137e-01 4. 1748e-01 0 2.7474e-03 6.2160e-01

This time there is an order of magnitude gap between the 4th and 5th eigenvalues of phat*qhat

and the costs of the LQG and reduced-order controllers are nearly identical. This indicates that

the 4th order balanced controller is nearly optimal. This deduction could also be made by gener-

ating a performance curve for the LQG controller (by varying q20) and superimposing it with the

performance curve for the corresponding 4th order balanced controllers as shown in Figure 7.2. If

for a given q20 the two controllers have essentially the same state and actuation costs then the 4th

order balanced controller is probably nearly optimal.

If the 4th order balanced controller is nearly optimal then by using a few Newton corrections

(say,1 to 6) we should be ableto converge to the optimal controller(practically,the controller

that satisfiesa small toleranceon the normalized norm of the cost gradient). This is verified

below. Function nwtpar isused to intializethe algorithmparameters to theirdefaultvalueswhile

nwtprint isused to displaythesedefaultparameters.

>> par = nwtpar;

> nwtprint(par) ;

1. Will print intermediate results.

2. gradient prediction tolerance = l.O0000e-05

3. gradient correction tolerance = 2.00000e-08

4. gradient final tolerance = 2.00000e-08

5. minimum homotopy step size = 1.00000e-06

6. maximum number of corrections allowed = 10.000000

7. Will use Hessian from last correction for prediction.

8. Will not use line search.

9. Will let program run automatically.

10. initial step size = 1.000000

11. No basis is assumed for the controller.

At this time the user has the option of changing any of the default parameters. However, we will

be content with them. The default parameters will also be printed by dnwthom. In the following

call to dnwthom the initial and final system parameters are identical so that the algorithm will

only perform correction loops.

>> [ac,bc,cc,dc,val,par] = dnwthom(ac,bc,cc,dc ....
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a,b,c,d,r1,q20*r2,r12,vl,q20*v2,v12 ....

a,b,c,d,r1,q20*r2,r12,vl,q20*v2,v12,par);

1. Will print intermediate results.

2. gradient prediction tolerance = 1.00000e-05

3. gradient correction tolerance = 2.00000e-08

4. gradient final tolerance = 2.00000e-08

5. minimum homotopy step size = 1.00000e-06

6. maximum number of corrections allowed = 10.000000

7. Will use Hessian from last correction for prediction.

8. Will not use line search.

9. Will let program run automatically.

10. initial step size = 1.000000

II. No basis is assumed for the controller.

Computing Initial Hessian...

Inverting Hessian...

***** INITIAL PARAMETERS *****

normalized normalized

cost costO-cost gradient

normalized

gradient

Hsrris Corpor_iom

del-theta

6.21598e-01 O.O0000e÷O0 7.35784e-07 5.54898e-O10.OOOOOe÷O0

The algorithm is still in process but we note here that the initial

normalized gradient value of 7.36e-07 is fairly small. The general

rule is that values _ to about 2.0e-08 are very

small.

********** CORRECTING **********

**** lambda = l.O000e÷O0 ****

.......... Correction Iteration I ..........

Computing Hessian...

Inverting Hessian...

** correcting: i = 1.000000, lambda = 1.0000e+O0 **

normalized normalized

cost costO-cost gradient gradient

normalized

del-theta

6.21598e-01

6.21515e-01

O.O0000e+O0

1.33389e-04

7.35784e-07

7.34790e-08

5.54898e-01

5.54259e-02

O.O0000e÷O0

1.92813e-03
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The normalized gradient correction tolerance is: 2.00000e-08

With the algorithm stm in progress we note that the top line denotes the initialconvergence

parameters before the first correction while the bottom line denotes the value of the convergence

parameters after the correction. It is seen that both the cost and gradient were improved (i.e.,

decreased by the first correction iteration). However the normalized gradient is still not below its

maximum tolerance of 2.0e-8.

Correction Iteration 2

Computing Hessian...

Inverting Hessian...

** correcting:

cost

i = 2.000000, lambda = 1.0000e+00 **

normalized normalized normalized

cost0-cost gradient gradientdel-theta

6.21515e-01 1.33389e-04 7.34790e-08

6.21515e-01 5.92847e-07 2.33195e-10

The normalized gradient correction tolerance is:

doubling step size to 0

**** Exiting DNWTHOM with lambda=1. ****

5.54259e-02

1.77478e-04

2.00000e-08

1.92813e-03

1.86134e-04

The correction of the initial4th order balanced controller converged in 2 iterations. This dearly

indicates that the balanced controllerwas nearly optimal. The controller(ac,bc,cc,dc)is now the

optimal 4th order controllerfor the scalefactor q20.

We now set q2=I and use the dnwthom to deform the initialcontrollerinto a higher authority

controller.We show some of the beginning output of dnwthom.

> [ac,bc,cc,dc,val,par] - dnwthom(ac,bc,cc,dc ....

a,b, c, d,rl ,q20*r2,rl2,vl,q20*v2, v12 ....

a,b, c,d,rl ,q20*r2,r12,vl, q20*v2, v12,par) ;

***** INITIAL PARAMETERS *****

normalized

cost cost0-cost

normalized normalized

gradient gradient del-theta

7-6

6.21515e-01 O.O0000e*O0 2.58673e-10

October 1993

1.73424e-04 O.O0000e+O0
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• ********* PREDICTING **********

• *** lambda = O.O000e+O0 ****

• * dlambda = l.O000e+O0 **

Computing Pseudo-Inverse of Hessian!

number of sing. vals. retained = 9.000000

• * predicting: lambda = 1.00000e+O0, dlambda = 1.00000e÷O0, **

normalized normalized

cost costO-cost gradient gradient

Harris Corporatiow

normalized

del-theta

6.21515e-01 O.O0000e+O0 2.58673e-10

1.72524e-01 2.60247e+00 8.79235e-05 5.89473e÷01

The normalized gradient prediction tolerance is: 1.00000e-05

!!adjusting step size!!

dlambda = 5.0000e-01

1.73424e-04 O.O0000e+O0

1.95698e-02

** predicting:

cost

lambda = 1.25000e-01, dlambda = 1.25000e-01, **

normalized normalized normalized

costO-cost gradient gradient del-theta

4.79497e-01 2.96182e-01 1.46945e-05

5.48829e-01 1.32438e-01 4.47514e-06

The normalized gradient prediction tolerance is:

********** CORRECTING **********

**** lambda = 1.2500e-01 ****

......... Correction Iteration I .........

Computin E Hessian...

Inverting Hessian...

condH(1) = 3.36501e÷07 [Hessian condition number]

condH(2) = 9.61511e-01 [free parameter singularity]

condH(3) = 2.05027e÷00 [dthetap ratio]

** correcting:

cost

9.85177e÷00 4.89245e-03

2.44622e-05

i = 1.000000, lambda = 1.2500e-01 **

normalized normalized

costO-cost gradient gradient

3.00030eeO0

l.O0000e-05

normalized

del-theta

5.48829e-01

5.48807e-01

O.O0000e+O0

4.01362e-05

4.47514e-06

1.10053e-07

3.00030e+00

5.74753e-02

O.O0000e÷O0

1.54763e-04
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**** ExiZing DNWTHOMwith lambdaffil. ****

We now use valprint to check the performance parameters recorded in the vector val.

_valprinz(val)

1. final homoZopy parameter value ffi1.00000e+O0

2. Zotal # of Hessian calculazions ffi33.000000

3. minimum # of corrections for fixed lambda = 1.000000

4. maximum # of corrections for fixed lambda ffi3.000000

5. minimum homotopy sZep size = 3.12500e-02

6. maximum homotopy step size = 1.25000e-01

The costs plotted in Figure 7.2 are computed using dqcosts as follows.

arguments v2 is set to zero.

:>costs = dqcosts(ac,bc,cc,dc,a,b,c,d,rl,r2,rl2,vl,O,vl2);

_costs _

COSTS =

5.5053e-02 7.8950e-02 0 0

The optimal controller is listed below.

>> ac

ac =

9.6632e-01

-3.0758e-02

2.9294e-03

1.3349e-03

4.6790e-02

9.6053e-01

-8.6959e-03

5.5798e-03

-1.1916e-02

7.4261e-03

9.9335e-01

-8.8247e-02

-5.3926e-03

-4.1006e-04

8.7504e-02

9.8980e-01

D> bc

bc =

-2.9757e-02

9.2577e-02

-3.3036e-02

-2.8086e-02

CC

CC =

-8.6600e-02 6.4435e-02 1.6983e-02 -2.9795e-02

Note that in the input

1.3400e-01
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dc

dc ffi

3.4606e-02

Some Rules of Thumb

1. Choose the initial weights (R1,0,R2,0, R12,0,Vi,0,V2,0,Vl_,0) and the final weights (RI,I,R2,/,

R12j,V1,/,V2,/,V12,/) so that along the homotopy path the regulator and estimator poles have

the same order magnitude. That is avoid situations where the estimator poles are very fast while

the regulator poles are slow or vice versa. The algorithm will converge in these cases but the

convergence tends to be slow.

2. Our experience indicates that no constraints on the controller basis appear to yield better

numerical robustness than constraining the basis to tridiagonal form or some other basis. When

attempting a 6th order controller for the four disk problem constraining the controller basis to

tridiagonal form yielded very poor numerical robustness. However, when the controller basis was

left unconstrained the algorithm performed very well. This phenomena is discussed further in

Appendix H.

3. For better control don't take huge steps between the initial and final system parameters. For

example don't try to go from very low control authority to very high control authority all at once.

Take "reasonable size" increments. You may want to adjust the tolerances along the way to increase

the algorithm efficiency.
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8. HADOC Toolbox Reference

balcred .................................... 8-6

beam .................................... 8-7

bodeplot ................................... 8-8

dp,dq,clz .................................. 8-11

ddp,ddq,dclz ................................. 8-11

dlyap2 .................................... 8-12

dnwthom ................................... 8-13

• 8-14dqcosts .................................

dstable .................................... 8-15

eigpq .................................... 8-16

nwtpar .................................... 8-17

nwtprint ................................... 8-17

rnormal ................................... 8-23

to180 .................................... 8-26

valprint ................................... 8-27
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8.1 Commands Grouped by Function

Initialization Routines

balcred

dlqg

balanced controller reduction

discrete linear quadratic gaussian design

Homotopy Algorithm

dnwthom

ntwpar

nwtprint

valprint

discrete Newton homotopy algorithm

set default parameters for dnwthom

print parameters for dnwthom

print algorithm run-time statistics

Controller Bases

ccf

rnormal

rpf

convert to controllable canonical form

(valid only for SISO controllers)

convert to real normal modal form

(a special case of tridiagonal form)

convert to real (or second-order) polynomial form
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Costs

dqcosts discretecosts

Closed-Loop Matrices

cla

clr

clv

dclp

dclq

dclz

construct state matrix

construct performance weight

construct noise intensity or covariance

construct discrete observability grammian

construct discrete controllability grammian

construct discrete Z matrix
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Utility Routines

beam

bodeplot

c2dv

dlyap2

dstable

eigpq

to180

provide plant, noise statistics and perform weights

for a simply-supported beam

plot magnitude and phase on same screen

discretize disturbance intensity

discrete Lyapunov solution using diagonal basis

determine discrete stability

ordered eigenvahles of product PQ

converts phage vector to lie in interval [- 180,180]
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balcred balcred

Purpose:

Compute a reduced-order controller using balanced controller reduction.

Synopsis:

[ac,bc,cc] = balcred(acO,bcO,ccO,pgram,qgram,nc)

Description:

Computes a controller (Ac, Be, Cc, De) of order nc given an initial controller of greater di-

mension (At,o, Bc,o, Cc.o, Dc.o) and the corresponding observability and controllability grammians

(Pg,a,n and Qgram).

See also:

dlqg

8-6 October 1993 GASD-HADOC



beam

Harris Corporation

beam

Purpose:

Compute a continuous-time or discrete-time representation (including noise statistics and per-

formance weights) of a beam example.

Synopsis:

[a,b,c,d,rl,r2,r12,vl,v2,v12] = beam(nmodes,h)

Description:

Computes a continuous-time or discrete-time representation of the beam example described in

the following reference:

D.S. Bernstein, L.D. Davis and D.C. Hyland, "The Optimal Projection Equations for Reduced-

Order, Discrete-Time ModeUing, Estimation and Control," AIAA J. Guid. Contr. Dyn., Vol.

9, pp. 288-293, 1986.
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bodeplot bodeplot

Purpose:

Plot magnitude and phase information on same screen.

Synopsis:

bodeplot(fhz,mag,phase,titlename,axes)

Description:

Plots magnitude and phase on subplots that appear on the same screen. If axes is present, it

is the 2 x 4 matrix of axis limits for the magnitude and phase (i.e., axes = [axismag; axisphase].
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ccf

Purpose:

Transform a single-lnput, multi-output system to controllable canonical form.

Synopsis:

[a,b,c,T,Tinv] = ccf(aO,bO,cO)

Description:

Transforms a single-input, multi-output plant to controllable canonical form and also returns

the transformation matrix and its inverse.
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cla,clr,clv. cla,clr,clv

Purpose:

Construct closed-loop matrices.

Synopsis:

acl = cla(a,b,c,d,ac,bc,cc,dc)

rd = clr(r1,r2,r12,c,cc,dc)

vcl = dv(vl,v2,v12,b,bc,dc)

Description:

Function cla computes the closed-loop state matrix using (2.7). Function clr computes the

closed-loop performance weight using (2.9)-(2.10). Function clv computes the closed-loop distur-

bance intensity or covariance using (2.14)-(2.15).

See also:

dclp, dclq
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c2dvc2dv

Purpose:

Discretize a continuous-time disturbance intensity matrix.

Synopsis:

vd = c2dv(v,a,h)

Description:

Converts a continuous-time disturbance intensity V into an equivalent discrete-time covariance

(assuming a zero-order hold with sample period h) using

h

Vd = fo exp(A*)Vexp(AT)ds"

GASD-HADOC October 1(,)93 8- Ii



Harris Corporation

dclp, dclq, dclz dclp, dclq, dclz

Purpose:

Compute the discrete, closed-loop grammians and Z matrix.

Synopsis:

pcl = dclp(acl,rcl)

qcl = dclq(ad,vd)

zcl = dclz(pcl,qcl,acl)

Description:

Function dclp returns the closed-loop discrete observability gralnmian satisfying

Pct T= ActPc_Act + Rc_.

Function dclq returns the closed-loop discrete controllability grammian satisfying

Qct = ActQctAc T + l_t.

Function dclz requires the outputs of dclp and dclq to return the closed-loop discrete Z matrix

satisfying

T
Zct = QctActPct.

See also:

cla, clr, clv
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dlyap2

Purpose:

Solve the discrete-time Lyapunov equation by transforming to the modal basis.

Synopsis:

q = dlyap2(a,v)

Description:

Computes the solution Q to the discrete-time Lyapunov equation

Q = AQA T + V

Harris Corporation

dlyap2

by transforming to the complex modal basis. If the input A is a column vector, then the system is

assumed to be in the diagonal basis and the eigenvalues are the elements of A.
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dnwthom dnwthom

Purpose:

Compute an optimal discrete-time controller using the Newton homotopy algorithm.

Synopsis:

[ac,bc,cc,dc,par,val] = dnwthom(ac0,bc0,cc0,dc0, ...

a0,b0,c0,d0,rl0,r20,v 10,v20,v 12, ...

af,bf, cf, df, rlr,r2f,vlf,v2f,v12,par)

Description:

Computes an optimal discrete-time controller using the Newton homotopy algorithm described

in Section 6. On input, the vector par contains the variable algorithm parameters whose default

values are set using function nwtpar as follows:

par -- nwtpar.

See the nwtpar reference pages for a detailed description of the elements of par. On output, val

is a vector containing descriptions of important run-time parameters. In particular,

val(1) = value of homotopy parameter on return

val(2) = total number of Hessian calculations

val(3) = min # of corrections for fixed lambda

val(4) = max # of corrections for fixed lambda

val(5) = minimum homotopy step size

val(6) = maximum homotopy step size.

val(7) = number of mega-flops required for run

val(8) = number of seconds required for run.

See also:

nwtpar, nwtprint
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dqcosts.' dqcosts

Purpose:

Compute each of the quadratic costs for a given discrete-time system.

Synopsis:

[costs, p22, q22] = dqcosts(ac,bc,cc,dc,a,b,c,d,rl,r2,rl2,vl,v2,vl2)

Description:

Computes the quadratic costs for the given discrete-time system. On return costs is a 5th order

vector whose elements have the following values:

costs(l) = state cost (xTRlx)

costs(2) = input cost (urR2u)

costs(3) = cross cost (2xTRx2u)

costs(4) = feedthrough cost (tr DTR2DcV_)

costs(5) = total cost (sum of the above).

The matrices p22 and q22 are respectively equal to tile (2,2) blocks of the closed-loop observ-

ability grammian (Pet) and controllability grammian (Q_e)- If tile controller is an LQG controller,

then p22 = /5 and q22 = (_.

See also:

dpcl, dqcl, dcost

GASD-HADOC October 1993 8-15



Harris Corporation

dstable dstable

Purpose:

Determine the discrete-time stablility of a matrix.

Synopsis:

sflag --- dstable(a)

Description:

Determines the stability of the matrix A in the discrete-time sense (i.e., are the eigenvalues

of the matrix in the dosed unit circle). On return, sflag -" 1 if A is stable and sflag--0 if A is

unstable.
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eigpq, eigpq

Purpose:

Return the ordered eigenvaJues of the product of two input matrices P and Q.

Synopsis:

eigpq(P,Q)

Description:

Computes and prints the ordered eigenvalues of the product of two input matrices P and Q.

If the matrices are controller grammians (i.e., ]5 and (_) the ordering can be used to determine the

order of a reduced-order controller.

See also:

balcred
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nwtpar nwtpar

Purpose:

Set the default parameters for the Newton homotopy algorithms.

Synopsis:

par = nwtpar

Description:

Sets the variable algorithm parameters for the homotopy algorithms for optimal, discrete-time,

reduced-order controller design. A description of each of these parameters is given in the following

table.

See also:

nwtprint, dnwthom
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No. Function

9

10

11

12

Print Option

Default Description

Controls amount of input during the

execution of the homotopy algorithm

2 Prediction 1.0e+3 Maximum allowable gradient norm for

Tolerance prediction step.

3 Correction 1.0e-4 Maximum allowable gradient norm for

Tolerance intermediate correction loops.

4 Final 1.0e-4 Maximum allowable gradient norm for

Tolerance the final correction loops.

5 Minimum 1.0e-6 Minimum allowable step size of the
Step Size homotopy parameter.

6 Maximum 10 Maximum number of correction loops

Corrections for a fixed value of the homotopy.

parameter

7 Hessian for 0 0 uses Hessian from last correction step

Prediction for prediction. 1 computes a new Hessian.

parameter
8 Line Search 0

Automatic Run

Step Size .01

Controller Basis

Prediction Option

0 does not use line search
unless cost is not decreased.

1 always uses line search.

0 lets program run interactively.

1 lets program run automatically

On input, initial step size

On output, last step size used
1-no ba,_is

2-tridiagonal form
3-second-order polynomial form

4-controllability canonical form

0-no pre(liction

1-1inea,r prediction

2-circular arc prediction

3-cubic spline prediction
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nwtprint nwtprint

Purpose:

Print the variable homotopy parameters.

Synopsis:

par = nwtprint(par)

Description:

Prints the information contained in the vector par that describes the variable algorithm pa-

rameters for the Newton homotopy algorithms.

See also:

nwtpar, dnwthom
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rnormai rnormal

Purpose:

Convert a plant to real normal modal form or a standard alternative. These forms are special

cases of the tridiagonal form.

Synopsis:

[at,bt,ct,dt] = rnormal(a,b,c,d)

or

[at,bt,ct,dt] = rnormal(a,b,c,d, 'modal')

Description:

The first call with four input arguments converts a plant to real normal modal form, i.e., the

transform of state matrix, at has 2×2 blocks of the form

--_)i --//i

If 'modal' is input as a fifth input argument, that at has 2x2 blocks of the form

[ 0 1]_(_2 +w2) 2_ "

See also:

trimats
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rpfx rpfx

Purpose:

Transform a system to second-order polynomial form.

Synopsis:

[A,B,C,T,Tinv] = rpfx(A0,B0,C0)

Description:

Transforms a system to second-order polynomial form and also returns the transformation

matrix and its inverse.
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to180

Purpose:

Transform a phase vector to lie in the interval [-180,180].

Synopsis:

phase180 - to180(phase)

Description:

Transforms a phase vector to lie in the interval [-180,180].

Harris Corporation

to180
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valprint .valprint

Purpose:

Print the run-time homotopy parameters.

Synopsis:

valprint(val)

Description:

Prints the information contained in the vector val that describes important run-time informa-

tion for the Newton homotopy algorithms.

See also:

dnwthom
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Appendix A: Cost Derivatives

In this appendix we consider the cost function J(Ac, Be, Co) defined by (2.4) or, equivalently,

(2.16). We derive expressions for _ 0.7_ _ and8A_ ' 8Be ' 8C_ ODe "

Let £ denote the Lagrangiaa defined by (2.33) which is rewritten here as

£(A_,Bc,Cr,Dc,P,O,) A_tr[C_R + P(AQA T + "V-Q)+ DT R2DcV2]. (A.2)

where

= i](_AT + ]Y (A.3)

Then,

OJ 0£ OJ OJ 03 OJ 03 03 (A.4a, b,c,d)
OAc- OA_' OBc - OB_' OC_- 8C_' 8D_ - 8De

subject to the constraint

or, equivalently,

8£
0 = ----= (A.5)

8Q

t5 = /]Tp_ + /}. (A.6)

Now, let ¢ denote an element of At,Be,Co or De. Then,

8¢ - 0¢-tr [ 8¢+ (-_QA + 8¢ +-_) + tr(D_RTR2DcV2) (A.7)

or equivalently

03 t -Sk -8C; 8A- 8 T
_- = r(Q-_ + P_-_+ 2_-_Z) + -_tr(DrR2D_V2 )

where

(A.8)

It follows from (A.8) that

2 ="(_Tp. (A.9)

where

8,7 8K 827 8K 83 8K 83 8K

8At - 8At' 8B_ - 8B_' 8C_ - 8C_' 8Dr - 8D_ (A.10)

K(A_,B_,C_,Dc,P,Q,Z) gtr[¢/_(C_,D_)+ PV(Bc, Dc)

+2fI(A_,B_,Cc,D_)2] + tr(Df R_.D_V2)
(A.11)

GASD-HADOC October 1993 A-1



Harris Corporation

and from (2.7), (2.9)-(2.10), and (2.14)-(2.15)

where

,A(Bc,Cc, Dc) = [ A -B,.cBDcC

[itll ]k(B_,C_,D_) = L ,

_ w, TnTDT cTDTR2DcCkll =R1 _ _'c-_12-R12DcC+

k12 = -R12Cc + CTDTR2cc

2_22 T= Cc R2C_,

and

where

fZ(Bc, C_,D_) = [ _Tl/11 V22j_12]

_/11 = VI - BDcV T - V12DT B T + BDcV2DT B T

I_12 = VmB T - BD_V2B f

I)22 = B _V2B w.

(A.12)

(A.13)

(A.14a)

(A.14b)

(A.14c)

(A.15)

(A.16a)

(A.16b)

(A.16c)

The desired derivative expressions will be derived using (A.10). The development proceeds by

considering each of the four terms in the right hand side of (A.1) and differentiating these terms

with respect to Ac, Bc, C_ and Dc. It is assumed that ]5, _ and 2 are partitioned conformably with

A,/_ and V such that

/5.__. [/511 /51'] [(_-_1 012] ['_ll 212]/ST ]522 Q= 2= . (A.17)' [Q12 022' LZ21 222

tr QR

tr0k = tr(QlaRn + 21012RT2 + Q22R22).

Using (A.14), we may then write

trOR=tr(OllR,- - T T T2Q11C D cRI2 +OIICTDTR2DcC)

+2tr(-Q12C TRT2 + C2mCTR2DcC)

+tr(02 C:R2Co).

(A.18)

(A.19)
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Differentiating (A.19) gives

_A tr0k= 0
c

0 - -

OBc trO R = 0

0 tr(_/_ -- 2(-RT2(_12 -[- R2DcCQ, 12 "["R2Cc(_22)
OCt

o tr0h= 2(-nT2011CT+ R2DcCOI,CT+ R_CoOScT).
ODe

tr PV

Harril Corporation

(A.20)

(A.21)

(A.22)

(A.23)

tr t5V = tr(/511Vll + 2/51217T +/52_2 ).

Using (A.16), we may then write

tr PI_" = tr(PllV1 - 2P11BDcV w + P11BDcV2DTB T)

+2tr(/512BcV w - _2BcV2D_B T)

+tr( P22 BcV2 BT ).

Differentiating (A.25) gives

-_--0 tr/_l_" =0

--_--0tr/5"v" = 2(/5Tv1_- pTBD_V_ ÷ P22BcV2)
OBc

0 trPlY = 0
OCc

---° trP_ = 2(-BTp_V_ + BTP_BDcV_- BTPl_B_V_).
OD_

tr ,4Z

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

tr AZ = tr[(A - BD,C)21_ - BCeZ21 + B_C212 + (Ac - B_DC,)222]

Differentiating (A.30) gives

0
trAZ = 22_.

OAc

= - Z22C_ D )oBtrA Z 2(2Tc T "W W W

0
-- "- T T'TtrAZ=-2(BTZ w +D B_Z22 )
OC_

OD---:ctrAZ = -2BT zT c T.
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tr DTR2DcV2

It follows from

(A.35)-(A.38) that

_0 trDT R2DcV2 = 0
OAc

O----trD_R2DcV2 =0
OBc

0 T
_--_-_trD c R2DcV2 = 0

O-_-trDTc R2DcV2 = 2R_DcV2.
c

ff(A¢,Bc,CcDc)

(A.10) and (A.11) with (A.20)-(A.23), (A.25)-(A.29),

0: =2_
OAc

O__JS= 2(pWyl _ _ P_BDcV2 + h2BcY_
OBc

+ 2Tc w - 2[2CTD T)

_ 2(-R,_,_ + R_DoC_,_+ R._Co_)_

BT2T T T ~T- - D B_ Z22)

- 2(-RT:O.I,: +R:DoC(_,,+ R:C:O.I:C_

+ BTJbll V12 -.{- BTpllBDcV2 - BTpx2BcV2

- BTzTcT + R2D¢V2).

(A.SS)

(A.36)

(A.ST)

(A.3S)

(A.31)-(A.34) and

(A.39)

(A.40)

(A.41)

(A.42)
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Appendix B: Closed-Loop Matrix Derivatives

In this appendix we present explicit expressions for the derivatives o_ oft aO o_i_;, _,., _oj, _,

o_.£ where

[ vec(Ac)

|vec(Bo)
0 = | vec(Cc)

[vec(Dc)

_ = [ A - BDcC -BCc ]BoO Ac- BcDCc '

[Rll R12]k = LkT_ k. '

(Ba)

(B.2)

(B.3)

where

Rll R1 w,T r_TDT _ R12DcC + cTDTR2DcC-- _ _._ al c a_12

T T
R12 -- -R12Ce + C D_ R2C_

R22 = cTR2cc,

(B.4_)

(B.4b)

(B.4c)

and

where

(B.5)

Vii = V1 - BDcV w - V12DTB T + BD¢V2DTB T

V12 = VI2B T - BDcV2 BT

V22 T T= Bc V2B_ .

(B._)

(B.6b)

(B.6c)

It is assumed that the plant matrices (A, B,C, D), the cost weighting matrices (R1, R12, R2)

and the disturbance matrices (V1, V12, V2) are the following functions of A.

C(A) D(A)] = [ A°Co Do A( AI BI

[ R,(_) R.(_)]RT2(A) R2(A)J = LR(A)LT(A) (B.Sa)

where

LR(A) = LR,o + A(LR,I - LR,o) (B.8b)
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and LR,o and LR,! satisfy

where

and Lv,o and Lv,! satisfy

Below, we use the notation

Note that from (B.7)-(B.9)

where

where

Ln,oL_,o [ Rl,O Rl_,O] (B.8c)= [RT_,o R_,o

[ RI,! RI_,I] (B.8d)LR,ILL= [R_,I R2.I

y_(_) yl,(_)l = Lv(A)LT(A)
y_(_) v](_)] (B.9a)

Z,v(X)= Lv,o + ,_(Lvj - l,v,o) (B.9b)

v..,o] (B.9c)L_oL_,o: vv_°1_,o V2,oJ

LvtLT, I = [ V,TVI'I V12,IV2,oJ"] (B.9d)
12,1

OM
2_/= --. (B.10)

0A

[C Df_] = [ AI - A°CI Co DIBI- B° ]Do (B.11)

ks ] = IfnLnT (B.12a)

I_R = LR,I - LR,o (B.12b)

(B.12c)

Lv = Lv, I - Lv, o. (B.12d)

oh and of/The derivations of the expression for _0a, o0, _ are primarily based on the application

of the following derivative formulas. It is assumed that X is an n x m matrix.
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d
--XA = [A(j,:)]ro--,
dxij

d
--AX = [A(:,i)]col-j
dxlj

d XTA - [A(i,:)]ro.-j
dxij

d AX T _ [A(:,j)]col-,
dxij

d
--AXB = A(:,i)B(j, :)
dxij

d AXTB = A(:,j)B(i,:)
dz,j

(B.14)

(B.15)

(B.16)

(B.17)

(B.lS)

(B.I9)

OOj

where oA: and _ are given respectively by (D.2.36) and (D.2.37) of Appendix D.
Obc,kt Occ,tl

ok
OOj

(B.20)

(B.20

(B.22)

(B.23)

ok
Oac,kt

ak

Obc,kt

--0

--0

(B.24)

(B.25)
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oh
Odc,_t

0

SYM

[-R.(:,k) + O'D_R_(:,k)]co,__ ]

J[C T R2(:, k)lcol_t "Jr- [_2 Cc(]¢,: )]row-t

[ cT(:,t)[R2 D, C(k,:)-RT(k,:)]
+[cToTR2(.,k)-RI2(.,k)IC(t,.)

SYM
CT(:'g)_(k':) ]

o9

00_

(B.26)

(B.27)

o9

Oac,kt

o9 _ [ oObc,kt SYM

o9
--=0

OCc,kt

Odc,kt

[V12(:, g) - BDcV2(:,g)]eo,-k ]

[V2BcT(g, :)]row-k + [BcV_(:,l)]col-k

B(:,k)IV2 D T BT(t,:)- vT(t,:)]

+[BD_ V2(: ,t)-Va:(:,t)IBT(k,:)

SYM
-B(:'k)V2BT(I':) ]O

(B.28)

(B.29)

(B.30)

(B.31)

A= )t - f3D,C - BD,¢ -BCcBo¢ -BoDCo] (B.32)

where

_11 "R1 (_T r_T I_T pT r)T ]_T R12DcC- R12DcC-- -- _" "-"c ='12 -- v _"c "'12 --

cTnT R r_ A+ cTDTR_DcC + cTDTR_D_C + --_ _--_

k_2 = -RI_Co + CTD_R2C_ + CTD_ R_C_

k22 = C[ k2Co.

(B.33)

(B.34a)

(B.34b)

(B.34c)
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_= O_
Oh

tV12 V22
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(B.35)

°

_/1, = ]/1 - BDcV_ - BD_'Q T - V12D_"T B'r _ V12DT B'r

+ BDcV2DcB T + BDc]/2D_B T + BD_V_D_B T

_r12 • T " T TBDc V2B c BDc92B_= -V12B c -

(B.36a)

(B.36b)

(B.3O )
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Appendix C: The Input-Normal Riccati Basis

The homotopy function H(0, A) described in Section 4 is defined to solve the optimal reduced-

order dynamic compensation problem for discrete-time systems. The elements of the vector 0

include parameters which completely describe the controller (Ac, Bo,Cc, Dc). For computational

efficiency it is desired that the vector 0 be as small as possible. Thus, we desire to represent the

controller (Ac, Be, Co, Do), assumed to be minimal, with the fewest parameters possible. The results

of this section reveal that in a certain basis, which we will denote as the input normal Riccati basis,

the controller plant matrix Ac is almost always completely characterized by its input and output

matricesBc and Cc.

Theorem C.1. For every minimal ntch order plant (Ao,]_c,C'o,Do) there existsa similar-

. Tlc _.ity transformationTz and a positivematrix f_ = dmg{wi}i=1 such that (Ac T_'IfloTIBo =

T_-l]_o, Co = (POT/, Do = Do) satisfies

0= Ao + A T + BoB T -cTco (C.1)

0 = ATn + nAo + C_Cc - nBcB_n. (C.2)

In addition,

T T 1/2
wi = [(C o Cc)./(BoB o ),;]

1 T
Ao,ii = _[(Cc Cc)ii-(BcBT)ii]

(C.3)

(C.4)

and if wi # wj for i # j, then

Ac,,j = wj(1 +wi)(BcBT)ij-(CTCc)ij(1 +wj), i# j (C.5)
_i -- wj

so that Ao is completely and uniquely determined by Bo and Co.

Proof. The minimality of (Ao, Be, Co) insures that there exists unique positive definite solu-

tions Q and P of

0 = fi, cQ + Q._T + _c[_T_ Q_T_c Q

0 = flTP +P]ic + cTcc - PBc[_TP.

It is well known that there exist a transformation T! such that

GASD-HADOC
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It follows from (C.6)-(C.8) that (Ae,Bc,Cc) satisfies (C.1) and (C.2).

We now show by construction that (C.3)-(C.5) hold. First recognize that (C.1) and (C.2) are

equivalent respectively to

0 = Ac,O + Acji + (BcBT_)O - (CTCc)o

T c _ wiwj(BcBT)o.0 = wiAc,o + wjAc,ji + (Co c)o

(c.9)

(c.10)

Letting i = j in (C.6) gives (C.4) while it follows from (C.7) that for i = j

0 -- 2_iAc,ii + (cTeCc)ii 2 T-- _i (Be Bc).. (C.11)

Substituting (C.4)into (C.11) gives

T 2 [(cTc_),, (BcBW),i]w, + (cWcc)i,0 = -(B e Bc)iiw i + (c.12)

which has positive solution wi given by (C.3).

2 and adding the result to (C.10) givesMultiplying (C.9) by -w i

0 = (wi-wj)Ac,o + (cTcc)o(1 +wj)-wj(1 +wi)(BcBT)o (C.13)

which implies that if wi _ wj for i # j then Ac,o is given by (C.5). []

Definition C.1. If the minimal order plant (Ac, Bc,Cc, Dc) satisfies (C.1) and (C.2) of Theo-

rem C.1, then the plant is said to be in input normal Riccati form.

Remark C.1. Input normal 1Liccati form is similar to the input normal form of Moore [1]

which is further explored by Kabamba [2].

Now, define

and H E IR _" x_, such that

or equivalently

C-2

A o 4C

f_ = diag{_i}i=_

_. _ (_, = _)-1, i # j
ho

( 0, i=j.

fl _= diag(CW C_) diag( B_BT ) -1

H g (N,, - ln,)/[Nn, fl - nN_, + I,,,]

October 1993

(C.14)

(C.15)

(C.16)

(C.17)
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where nm E n_ _x "_ defined by

Harris Corporation

Nm,ij = 1. (C.18)

Then the following remark holds.

Remark C.2. If wi # wj for i # j, then (C.4) and (C.5) axe equivalent to

Ac = I[cTcc - B_B T] * I,,, + [cTc_(I + fl) - (I,_, + fl)B_BTfll • n
-Z

Proposition C.1. Let A and Z be in IRnxn with A diagonal. Then,

AZ= /i, Z

(c.x9)

and

(c.20)

ZA = Z • X r. (c.21)

Remark C.3. It follows from Remark C.2 and Proposition C.1 that if wi # wj for i # j, then

Ac can be computed by

1 T T ,I T T ,_T
Ac = -_[Cc C_-B_B_ ],,+[C¢ Cc+(C_C c ) -(BcBT +fl,(B_BT +_-I,(BcBT)),flT],H (C.22)

where from (C.17) with (C.20) and (C.21)

H = (Nn° - In, )/_T _ _t + I,,, ). (C.23)

References

1. B. C. Moore, "Principal Component Analysis in Linear Systems: Controllability, Observability

and Model Reduction," IEEE Trans. Autom. Contr., Vol. AC-26, pp. 17-32, Feb. 1981.

2. P. T. Kabamba, "Balanced Forms: Canonicity and Parameterization," IEEE Trans. Autom.

Contr., Vol. AC-30, pp. 1106--1109, Nov. 1985.

GASD-HADOC October 1993 C-3





HarrisCorporation

Appendix D: The Gradient of the Cost Functional for the Input Normal Riccati Basis

In this Appendix it is assumed that the controller (Ac,Bc,Ce, De) is in the input normal

Pdccati form of Appendix C and is hence completely described in terms of Be, Cc and De. We

let J'(Bc,Ce,De) be the restriction of the cost functional J(Ac, Bc,Cc, Dc) defined by (2.4) or

equivalently (2.16) on the set of generic input-normal Riccati triples (Ae, Be, Ce). Also, define

rwc(Bo)l
0 _ | vec(Ce) | . (D.1)

Lvet(De) J

Then, with some abuse of notation we can write the restricted cost functional as ,_(0). The

homotopy algorithms to be defined later will be based on finding 0 satisfying

0 = f(O) _- Off
--_-(0). (D.2)

Now, recognizethat

[vec 
V,_(0) T _ BY_ [vecff-_J_ (D.3)

0O Lvec o_,

The next theorem present very useful expressions for _ _ and °-2- This result is very similar
OB= ' OC, ' OD, "

to Theorem 2 of [D.1].

Theorem D.1. The derivatives
OBc '

and 0__ are given by
OC, ' ODe

OJ OJ
- + 2(Y - ftZ_)Bc (D.4)

OBe OB_

o3 oy
- + 2Ce(Z - Y) (D.5)

OCe OC_

Og" OJ

OD"-"_c- ODe (D.6)

where Y 6 HI,"x" and Z 6 IR "x" are symmetric and satisfy

OY

0 - OA_ + 2(Y + nZ)

0 = [(A_- B_BTfl)Z],,, i= 1,2,...,nc.

(D.7)

(D.8)

Proof.

satisfies

Since the triple (Ac,B,,C,) is constrained to be in input-normal Riccati form, it

0 = A_ + A T + BoB T -cWc_

0 = ATa + 12A_ + cWc_- FtB_B_Ft.

GASD-HADOC October 1993
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Following the proof of Theorem 2 of [D.1] we define the new Lagrangian

£,(Ac,Bc,Cc, Dc,[',Q,Y,Z)

= £(Ac, Bc,Cc,Dc, P,Q)

+ tr[Y(Ac + AT -CTCc + BcBT)+ Z(A TJ7 + aTAc +CTCc - f_BcBTy2)]

where Y and Z axe n × n symmetric Lagrange multiplier matrices. Then

off 0.7 oY 0.7 03 oy
OBc - OBc' OCc- OCc' ODc- ODe

(D.11)

(D.12a, b, c)

subject to the constraints

0= _A--_c' 0 = _-_. (D.13a, b)

Now,

and

oZ oy
- + 2(Y + J?Z) (D.14)

OAc OAc

0_____= AcZ + ZA w - ZaBcB T - BcB f f2Z (D.15)
09

which implies

Equations (D.7) and (D.8)

Finally, (D.4)-(D.6) follow

0£ 2(AcZ BcBW aZ)ii, i 1,...,n_. (D.16)
Owi

follow respectively from (D.13a) with (D.14) and (D.13b) with (D.15).

respectively from (D.12a,b,c). D

We now state a very important corollary which describes how to efficiently compute Y and Z

satisfying (D.7) and (D.S). For convenience, we define

OL (D.17a)
£A,- aAc

F _ A_ - BcBW.f'2. (D.17b)

and rewrite (C.16) here as

f_ _=diag(CW C_) diag( BcBW ) -1.

Corollary D.1. The matrices Y and Z in (D.7) and (D.8) satisfy

1

Y = -(_LAo + nZ)
"fl,c

Zii -- -fi: 1 E fozJi
i=l

(D.19)

(D.20)
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and

1 L:_)o= zt2- t2z+ :(£A,-

which if wi _ wj for i _ j is equivalent to

z,j = }(£A=.,, £A,.j,)

wj -- wi

Proof.

symmetric

Harris Corporation

(D.22)

, i _ j. (D.23)

Equations (D.19) and (D.20) follow respectively from (D.7) and (D.8). Since Y is

0 = Y - yT. (D.24)

Substituting (D.19) into (D.24) gives (D.22) or equivalently

1£o = (_, - _,)z,_ - 5( A,.,, - CA, ,,), i ¢ j

which if wi ¢ wj for i _ j is equivalent to (D.23). []

Remark D.1. If wi _ wj for i _ j (D.20) and (D.21) are equivalent to

(D.25)

H _=(N,o - I,_,)/[fl T - _ + I,,]. (D.29)

Expressions for the partial derivatives _ _ a__if_and _ are derived in Appendix A. Here,
OA, ' OB_ ' OC_ ' OD_

we cite only the final results. First, we define

2 =" O,fi.TP

and note that/3, 0 and 2 have the partitioned forms

P=L',2 P22 LQ,2 Q22J'

GASD-HADOC October 1993

(D.30)

2n 2,21 (D.31)2= 2T 222J'

D-3

and H is given by (C.23), rewritten here as

where

,,1£
Zo = 5( A,- £:,)* 11 (D.27)

Zd _ - diag(F) -1 * (FZo) (D.28)

Z = Zo + Zd (D.26)
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where the (1,1) and (2.2) blocks of each matrix axe respectively n x n and nc x no. With this in

mind, the cost derivatives axe given by

0Y Q2 T (D.32)

0__.J_J_ 2(/_Tv12_ _T BDcV 2"+"f_22BcV_
OB_

+:,_c__:,gCTD_)

03" = 2(_RT2_1 '+ R2DcCQI_ + R_Cc022
OCc

+ BT2T nT I_T_T-- a., "'c "'22)

027 2(_RT2¢nCT + R2DcC(2,,C T + R.2Cc(jT2c T_c =
- BTpllVa2 + BTpllBDcV2 - BTp,2BeV2

- BTzTcT + R2DcV2).

(D.33)

(D.34)

(D.35)
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Appendix E:

As stated in the previous Appendix the objective is to find 0 satisfying

f(O) = 0

where

Harris Corpor_i_n

The Homotopy Map and It's Jacobian for the Normal Riccati Basis

(Ea)

GASD-HADOC

where

a(_) B(,_)

v,,:.,)v,:<.,,:>]=r ,,o v,:.o].,,([;.i.;,,,,,:..,1[V,.ov_;,,,) _(,,x)j LRT,,,oV2,o "t" V2,S J- RTI2,0 V2,o )/"

(E.3)

(E.4)

(V..5)

Note that (E.3)-(E.5)imply that A(0) = A0 and A(1) = AS, B(0) = B0 and B(1) = BI, etc ...

and it is understood that AS, BS,... were referred to in the previous sections simply as A, B, ....

The change in notation is simply for convenience.

The homotopy map h(O, A) is defined by

rvec(ZB°(0, A))]h(O,A) = | vec(Hc<(O,A)) (E.6)

Lvec(HD<(O,,_))

Ha,(O,A) = 2(pTv12 -- pT BDcV2 + P2_.BcV2

"k 2 5 C T _T F,T liT- ._2_c _-. + (Y - _Za)Bc)

Hc,(O,A) = 2(-RT, Q,2 + R_DcCO,,_ + R2C_O_

_ BT2 T DT IQT_ T- _" _ "-'25 + Cc(Z - Y))

HD,(O,A) = 2(-RT2QnC T + R2D¢C(_llC "r + R2CcQT2C w

- BTf'iiV12 + BTf'iiBDcV2 - BTf:'i2B_V2

- BT2_c "r + R2DcV2).

October 1993

(E._')

(E.S)

(E.9)

E-I

parameter A E [0, 1]. In particular, it is assumed that

S(O) _ VJ(O) T (a.2)

and J(0) denotes the restricted cost functional for the input-normal Pdccati basis. In this section we

define a homotopy map to accomplish this task and show how to efficiently compute it's Jacobiam

Definition of the homotopy map h(O, A)

To define the homotopy map we assume that the plant matrices (A, B, C, D), the cost weighting

matrix (R1, R_,RI2) and the disturbance matrices (Vl,l/2, V12) are functions of the Homotopy
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Here, it is assumed that/5,¢_ and Z satisfy

0 = Ik)_iT+ Y.

2 = 01iTp.

(E.10)

(E.11)

(E.12)

In addition, Y and Z axe given by

1
Y = --(_£A, + nZ)

Z = Zo + Zd

(E.13)

(E.14)

where

Zo_( T£A, -- £Ao) * H

Zd _-- diag(F)-1 • (FZo)

F g Ac- BcB[

fl _- diag(CT Cc) diag(BcBT) -1

_/_ (N,° - I..)./[_ T - fl + i,.].

(E.15)

(E.16)

(E.17)

(E.18)

(E.19)

(E.20)

Note that (E.13) and (E.14) axe equivalent to

0 = f-,A, + 2(Y + flZ) (E.21)

0--[FZ],,, i--1,2,...,nc. (E.22)

Also, note that it follows from the results of the previous section that

h(0, 1) = f(O)( _- V,I(P)T). (E.23)

Also, note that h(O, )_) is the transposed gradient for the optimization problem with parameters

(A(_),..., R_(_),..., V12(_)).

We now consider that computation of _7h(0, )t) T, the Jacobian of h(6, A). Note that

[oh ohl=_ o_j

F__2 October 1993 GASD-HADOC
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Recalling that 0 is defined by (D.1), such that for some integers k and g, Oj is given by

Oj = bc,kt, 0j = cc,kt, or 0j = dc,kt. (E.25)

It follows from (E.6) that _ is of the form

0...hh= ..vec(_Hc,). vec(_c_._Hc,) .vec(_Hc,)

O0 ..vec(_HD,). .vec(o_._tHD,) .vec(_HD,)

(E.20)

and Oh can be expressed as

Oh [vec(oHB.)] T

0"'_ = | vec(_-_ He, ) | (E.27)
[ vec(o'_ gD,) J

Below, we develop explicit expression for the derivative terms appearing on the right hand sides of

(E.26) and (E.27). We use the notation

MO ) =" OM
00_

,. OM

OA

(EaS)

Differentiating (E.10)-(E.12) with respect to Oj yields

P(') = _iTP(J)ii+ (/i(J)TP_i+/iTPA (j) + k('))

_(,) = _i_(J)_iT + (_i(_)_)LiT+ _i_/i(j)T+ ?(J))

2(_)= _)o)_i_p+ _/i(,)z p + _/i_/_(J)

(E.29)

(E.30)

(E.31)

where expressions for the derivatives/,(J), k (j) and 1)0) are given by (F.20)-(F.28) of Appendix F.

Differentiating (E.21), (E.22), (E.17) and (E.18) with respect to 0j yields

0 [r(J) .{_2 + fl(J)z] + 2(Y (j) + flZ (j))_-- L_Ac (E.32)

where

-[F(J)Z], = [FZ(J)]_, i = 1,2,...,nc

£(j) _, r_,)(j) T
Ac ---- _¢'_22

F(J) = AO) - (B_BT) (j)fl - _c_n,T(->(.i)+.

GASD-HADOC October 1993
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and the derivatives A_ j), r_T_(j) f_(J)(Bc_c, and may be computed using the results of Appendix G.

Note that if we define

£, ='a £(j)A_+ 2fl(DZ (E.36)

then (E.32) and (E.33) are equivalent to

y(J) = -(1L' + aZ (j)) (E.37)

Z (j) = Z(j) + Z(aj) (E.38)

where

ZO ) _ 1(/:, _/:,T) • H (E.39)

Z(dj) ==- diag(r) -1 , (FZ(oJ)+ FO)Z). (E.40)

Differentiating (E.10)-(E.12) with respect to A yields

: • + + +

(E.41)

(E.42)

(E.43)

where expressions for A, R and V are given by (F.29)-(F.33) of Appendix F. Differentiating (E.21),

(E.22) and (E.17) with respect to A yields

0 = z_Ac+ 2(? + a2)

0 = [F2]., i = 1,2,...,nc

(E.44)

(E.45)

where
• T

_Ac = QZ22

Note that (E.44) and (E.45) are equivalent to

.

2=2o+Zd

(E.46)

(E.47)

(E.48)

where

E-4

1 • T

2o=_(Z.Ao-Z.A,),H

Zd = - diag(F) -_ * (FZo).

October 1993

(E.49)

(E.50)
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Before presenting the desired derivative expressions we define

)TBDcV 2 r-,(J)._:HB,( _(j),2(j),Y(j)' z(j)) = _[JO'D(j)T1:12r12 -- :_ + 1-22 /9cr2

+ 2_ j)TCT -- --22_(J)TpTr_T'-_eu + (Y(J) -- _z(J)_)Sc) (E.51)

Hc,(Ofi),20),YO),g°))' = -_-,_m,,2"'_,Z:_O)+ _2'-'_"n C,_O),#,2+ R_C_0_)

nz_(J)T nTnT ,?(J)w C_(Z(#) y(i))) (E.52)-- _ L.,21 -- _ u c L-,22 "_

o, .T,_(J),_T -(_) T R_Cc0_{:c T)H_, (P(_), {_(_), Z (j)) ",_--_12wn "-" + R2DcCQu C +

W'(J) T T
-B Z n C ) (E.53)

Notice that the right hand sides of (E.51)-(E.53) are essentially identical in form to the right

hand sides of (E.7)-(E.9). The difference is that P,Q,Z,Y and Z and have been replaced by

P(J),0 (j), 2(J), Y(J) and Z(J) and the last term (2R2DcV2) in (E.9) has no counterpart in (E.53).

Derivatives with Respect to Bc,kt

Differentiating (E.7)-(E.9) with respect to bc,kt(= Oj) gives the following.

- (k,0

OBc,kt ' (E.54)

- 2(fl(J)zfl + flZfl(J))B_

OHc, _ Hbo(O(j),2(j),y(j) Z(j) ) _ 2nTE(t,k ) 2_
OBc,kt , -- --n_ x n_

(E.55)

OHD_ HID, (p(j),lO(j), 20)) ooT f_ r4k,t) ,:
OBc,kt -- -- i.z.J a 12ZgncXn _ w2.

(E.56)

Derivatives with Respect to Cc,kt

Differentiating (E.7)-(E.9) with respect to 0j(= cc,kt) gives the following.

OHso , (/5(j), 2(j),y(j), Z(j)) _ ""22L'.. x,_.
OCc,kt -- I'IB" ,)_T _(t,k) D T _ 2(Q(j)zQ + f_Zf_(j))B c (E.57)

- 9_ (_'t) (Z- Y)OHc. H,c.((2(1) 2(J),rO),Z(j))+ 2R2E(_,t×) (222 +--..×..
OCc,kt

(E.SS)

OHD, ' (p(j) O(j),2(j)) qD r'(k, t) _T t_T
OCc,kt -- HD" ' + _zl2_tgn_xn'_'dl2_ "

(E.59)

Derivatives with respect to d_,_t
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Differentiating (E.7)-(E.9) with respect to dc,kt gives the following.

OHBc H_B_([:,(j),_(j),y(j)Z(j)) _T D_(k, / ) *7

0Dc,kt = - _Z-12D_,_.X,, w v2

OHc_

aD_,kt

8HD,

8D_,kt

_ HtC,(Q(J),Z{J),Y(J),Z (j)) -1-2R2E(k'tx). C(_12

(k,/) - T DT6 Dz-,(k,t) V2-- = H_),(P(D,{)O),2 0)) + 2(R2E_.x.,C011C + ,_ *-11-,_..,.,

n z,(*,t)
+ _,. x,,V2).

Derivatives with Respect to A

where

Differentiating (E.7)-(E.9) with respect to A gives

aHBo= H_,(b,:,,y,2)

.}__5¢T "T T "T- ZnCc D )

allc, = H t -o_ c.(Q,i?,2)

+ 2(--/_T21_12 + R2DcCQn + R2D¢OQ12 + ._2Cc(_n

+ DT2_ _ i_T.T_T"-" *-'c _-_22)

. L .

- H'D,(P,Q,Z )

+ 2(-RT_01,c_- RT_O.I,t_

+ tt2D=CQ,1C T + R2D_d_)I,C T + R_D_CQ,,d T

+ R2CcC(_T2c T + R2Cc{_T_¢ T)

+ 2(--]_TfillVl2 -- BTfi,1_r12

+ i_TpllBDcV2 + BTpllBDcV2 + _TpllBDc_'2

- BT p12BcV2 - BT[912Bc_/2 )

_ 2BTzTc T _ BTz11 _T

+ 2(k2D_V_+ R2DoV2)

[/i D] [AI-A° BI-B°]¢ = CI Co C/ Co

[ kl k12 I [_4.,--.R1.0 "12..I--"12,0]kT_ R_J= R_,o R_,_ R_,oJh 12,I

[*,_Z v_J v,_,s v_T V_,oJ"= 12,o V2,s

(E.60)

(E.61)

(E.62)

(E.63)

(E.64)

(E.65)

(E.66)

(E.67)

(E.68)
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Appendix F: Closed-Loop Matrix Derivatives for the Input Normalized Riccatl Basis

In this appendix we assume that (Ac, Be, Co, De) is restricted to the input-Normal Pdccati ba_s

and present explicit expressions for the derivatives _,°A o_i'°[_ooi'°f"oAox, oboe,and _°_ where

"vec(Be) ]

vec(Cc) |
vec(D_)J

7t = [ A- BDcC -BCc ]BcC Ac- BcDCc '

[kll &2]k = [k?2 k2_ ,

0 ._

where

(F.1)

(F.2)

(F.3)

_-- _ /-'T nTDT cTDTR_DcCRll R1 '_ _'_12 - RI_DcC +

R12 -" -R12Cc "_- cT DT R2Cc

k:2 = C[ R_C_,

(F.4a)

(F.4b)

(F.4c)

and

where

(F.5)

(zll = V1 - BDcV T - V12Dc BT"T + BDcV_DT B T

_/12 = V12 BT - BDcV2Bf

_"2 2 DTv' BT--- J-)c 2 c •

(F.6a)

(F.6b)

(F.6c)

It is assumed that the plant matrices (A,B,C,D), the cost weighting matrices (R1,Ra2,R_)

and the disturbance matrices (V1, V12, V2) are the following functions of A.

C(A) D(A)] = [AOco Do A( A, B!

RT_(_) R2(A) J = [RT2,o R2,o "F R2,fJ - RT",2,o R2,o J)

v_(_) v:(_)] = Lv_,o V:,o + v_,fJ v'T15,o V2,o J)"

(F.S)

(F.9)
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Below, we use the notation

(F.10)

Note that

Co DI

IR, k.]k?_ & LRT,,_ Rl_.0

_ _2 /vL1 VlL

R1_,I - Rz2,o ]
R2,! - R2,o

V12,! - V12,o ] .v_.1- V2,o

(F.11)

(F.12)

(F.13)

The derivations of the expression for oA oh and o9_, oe, _ are primarily based on the application

of the following derivative formulas. It is assumed that X is an n x m matrix.

Derivative Formulas

d
_XA = [A(j, :)]row-/ (F.14)
dzq

d
--AX = [A(:, i)]¢ol-j (F.15)
dzq

d XTA = [A(i,:)]row-j (F.16)
dxij

d AX T = [A(:,j)]¢ol-i (F.17)
dxij

d
--AXB = A(:, i)B(j, :) (F.18)
dxij

d AXTB = a(:,j)B(i,:) (F.19)
dzij

OOj

0 0
[C(t,:)]row-k OA_ -- [DCc(_,:)]row-k

Ob'k,t

[: ]°--,-_ - [B_D(:,k)]¢o,__
0c¢1, ,t

(F.20)

(F.21)
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0_
Od_,kt

"-B(:, klC(t, :)

0 0]0
(F.22)

where _ and oA_ are given respectively by (D.2.36) and (D.2.37) of Appendix D.

ok

00#

ok

Obc,k,

ok

Occ,kt

_=0

0SYM

[-R,2(:,k)+CTD7R_______(:,k)lco,-t]
[CJR2(:,k)lco,_t+ [R._C_(k,:)],ow_tJ

cT(:,t)la_ D_C(k,:I_R_(k,:) I
+[CTDTR_(:,k)-R,2(:,k)lC(t,:)

SYM

o9

OOj

(F.23)

(F.24)

(F.25)

o9

Obc,kt

09

OCc,kt

of/

Od_,kt

0SYM

[V12(:,l) - BD_V2(:,Q]col-k ]

J[V_B_(e,:)]_o__k+ [B_V_(:,t)]_o__k

-0

[ B(:,k)[v_DT BT(t,:)-vT(e,:)I
+[BD, V_(:,t)--V_2(:,t)IBT(k,:)

SYM
-B(:, k)Y_BJ(e, :)]

0

(ra6)

(F.27)

(F.28)
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where

where

Rll R1 /'_T rtTDT pT r_TbT R12DcC - RI_D_C

+ _,TDTR2D_C + C TDTR2D_C + C TDTR2D_C,

k_2 = -k_2c_ + CTDTR2v_ + cTDTk2c_

= c TR co.

l/,, = % - BDcV T - BD_ "T _ ,_'12DTB T _ VI_DTB T

+ BD_V2D=B T + BDc_'2D_B w + BDcV2D_B T

_1_ = -V12B w - BDTV2B I - BOil?2 BT

V_2 = B_V2B T.

(F.31a)

(F.31b)

(F.31c)

(F.32)

(F.33a)

(F.33b)

(F.33c)
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Appendix G: Derivation of 0A_ and 0A_ for the Input-Normal Riccati Basis
8b=,=.t ac=p,t

G.1 Problem Statement

In this Appendix we assume that the controller triple (At,Be,Co) is in the input normalized

Riccati basis described in Section 3, such that

1 T BOBS]Ac =  [Cc

where

and

* In= -t- [(cTcc) * (Nr,= .t- A T) - (N,, + f2) • (BcB T) • A T] • H

_2 _ diag(CWC ¢)di ag(B cBT) -1

H = (Nn, - I,_, )/(A T - _ + I,,. ).

We derive explicit expressions for the derivatives 0A_ and 0A_
Obc,kt Occ,_,t "

Below, we use the notation

(G.1.1)

(Ga.2)

(G.1.3)

FBo _= BoB T

cJco

M_-N,_,-In,

=,, [1,1,...,1]T, u,, E IR n"

(G.1.4)

(G.1.5)

(G.1.6)

(C.LT)

and recognize that

1

Ac = 51

2 = diag(Z)uT, Z E IR '_`x,_,

Nn, -- Un_ u T`

= en¢ _rl¢

f2 = G/F

H = M/(D T - h + I,c)

* [Fcc - FB=] + [-Pc= * (gn. + A T) - (N,. + _) * FB. * A T ] * H

[Fc, * (N,_, +/_W) _ (gn, + _) * FB, * j,_T] __ A_ • M/H.

(G.1.8)

(G.1.9a)

(G.1.9b)

(G.1.10)

(G.1.12)

(G.l.13)

The derivations of the expressions for _ and 0A_ use the following identities.
Ob_,_t Oc,,_t

E(k,t) = e(k)e(t)T

GASD-HADOC October 1993
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e_)Tz : z(k,:),z _m "_

ze_)= z(:,t),z _m "_

[NID(x)] = -[N/D(x)/D(x)] , -_x

dlN(x)/D] = alv•_zl D

Z=ab T _ 2=(a,b)u,_, a,b, EIR '_

M*M=M

(G.l.15)

(G.1.16)

(G.l.17)

(G.1.18)

(G.1.19)

(G.1.2o)

6-2 October 1993 GASD-HADOC



Harris Corporation

G.2 Expression for _ and
9b.,_t OC.,_t

Differentiating (G.l.12) with respect to bc,kt gives respectively

OAc I

8bo,u = - _ I,.

#D T
+[Feo *

Obc,kt

+(A_,M/H),--

OF

Ob_,u

oD

Obc,kt

OH

Obc,kt

,FB. ORB, * _T of_T
• _T -- (Nn, + _) * (0b-_,_t + FB, * 0b-_,kt)]

*H

(G.2.1)

OAc 1 OFB,

_OFco ,(Nn_ + DT)+ Fc ,

OH
+(A¢*M/H)* .

OCc,kt

OD T OD

OCc,kt OCc,kt

Of_ T .
• FB,, DT- (N_, + D), FB, * __-Z----I

ucc,kt

,H

(G.2.2)

Below, we develop explicit expressions for the derivatives on the right hand sides of (G.2.1) and

(G.2.2).

OFB, and OFc,
Obc,kt Occ,kt

Differentiating (G.1.4) and (G.1.5) respectively with respect to bc,kt and ck,t gives

OFB, _ _(k,t) RT + /:_ b-?(k,/)T (G.2.3)
Obc,kt --no x n v --c _c _n u x n.

OFc,_ _?(k,t) T (y + _Tp(k,t) (G.2.4)
OCc,kg _n,, xn,_c _c _n,, xn,

which using (G.l.14) are equivalent to

OFB, = e(k)e(t)T T B e(t)e (k)w
Obc,kt n, n, Bc + c n, n,

_ T (k) (t) TOFc_ e(t) e(k)T cc .}. Cc en. en. .
OCc,kt n. n.

From (G.2.5) and (G.2.6) with (G.15) and (G.16) we obtain

OFs,
Obc,kt

OFcc
OCc,kt

(G.2.7)

(G.2.8)

GASD-HADOC October 1993 G-3



Harris Corporition

gives

and

Obc,kt OCe,kt

Differentiating (C.I.10) with respect to bc,kt and Cc,kt using respectively (C.1.17) and (C.1.18)

= OFB, (G.2.9)aft -($'c,l$'B,l_'so)*abo,ktObc,_t

af_ a;c,/_'8,"
Also, it follows form (G.2.7) and (G.2.8) with (G.1.9b) that

OYBc (k) T

Obc,kt = 2bc'kten_ u"c

arc, ,, (t) T

OCc,kt -- ZCc,kten, Un c

(G.2.10)

(G.2.11)

(G.2.12)

or, equivalently,

O_'B< _ 2bc,ktg(k) (G.2.13)
Obc,kt

o;c< _ 2c_,_,E_9. (G2.14)
_Cc,kt

Substituting (G.2.13) into (G.2.9) gives

- (_/FBc),(2b°,,<<Cf,<_)) (G.2.15)

or, equivalently,

i)f2 2bc,ktWk g(k)
Obc,kt fB,,kk "< "

Substituting (G.2.14) into (G.2.10) gives

oD

Occ,kt

or, equivalently,

- 2<°,k,c_9/;Be

0_2 2cc,kt g(t)
Oc_,kt /B<,tt

(G.2.17)
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Obc,k'-"_tand "OCc,kt

Let z = bc,kt or cc,kt. Differentiating (G.I.ll) by z yields

OHo_._x-" --[M/(_T--_+In*)/(_2T -- J_ + In')] * (0/_T_x 0_x )"

It follows from (G.I.ll) and (G.1.20) that

OH Of 2 Of 2T

O---f=H*n*(_ ox )

Hence, from (G.2.20) with (G.2.16) and (G.2.18) it follows that

Harris Corporation

(G.2.19)

(G.2.20)

OH

ab_,kt

OH

GOCc,kl

2bc,ktwk H (C ¢k) - £ ik)T ).
f B¢ ,kk

_ 2co,_,H • g • (C(_t) - C(/)T).
fB, ,re

(G.2.21)

(G.2.22)

Substituting (G.2.7), (G.2.16) and (G.2.21) into (G.2.1) gives

cOAc 1 In, * [e(k)Bc(:, t) :r + Bc(:,t)e_ )T
Obc,u - 2

( 2bc,kt_k c(k) * _2T
+ [-PC, * ( fB,,kk fs,,kk n_

- (Nn, "1- J_) * (e_)Bc(:,t) T + Bc(:,t)e_)T) * _T

- (N,_, + _) * FB. * ( 2bc'kt_k_(k)T)] * H
fBc,kk n¢

[- 2bc,ktwk H
+ (Ac * M/H) * _ * H * (£(k) _ E(,k)T )]

or, equivalently,

OAc

Ob_,kt

2b _,ktw k _-_T H]
+ fB.,kk £(nk*)* [FB, * * H - Ac * M*

2bc,_twk £(k)T , [-Fco * H + (N,,. + f2) * FB. * H + A_ * M * H]
+ fB,,kk

- [(N,,, + _) * H * _T], [e(k)B¢(:,t)T + B_(:,Qe_)T].
t Tt¢

(G.2.23)

(G.2.24)
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Substituting (G.2.8), (G.2.18) and

or, equivalently,

(G.2.22) into (G.2.2) gives

OAo 1 [c_)Co(k,:)+ Co(k,:)Te_)T

"[" [(e_)Cc(k, :) -_" Co(k, "_Te(t)T'jn. * (/_rn. "_" _T)

% Fc, * (2Cc._t £(nt)T ) _ (2Cc,k, C(n,)T)] • H
f B_ ,tt " f B_ ,tt

-- (Nn, + [2) * FB, * { 2cc,ke £(t)T)] * H
k n©

f B¢ ,tt

JB_ ,tt

OAc _ v(t.t)

OCc,kt = Cc'kt_rJne xn,

2cc,kt f(t)[_FBo , _-_T, H -{- A_ • M • H]
q" fB,,tt--n,

+ 2fc--'kt_e(t)T[Fc,, a -(N,_, + _)* FB, * a + Ac * M * HI
J Be ,tt

+ (N,o+ _T), H *[_)Co(k,:)+ Co(k,:)T_)T].

Now, define

(G.2.25)

(G.2.26)

ltrow _ [(FB. * j_T) _ (A_ • M)] • H

Hcot _= [((Nn, + _)* FB,) +(Ac* M)- Fc_] * H

HB, _- (Nn, + f2) * _'_T , H

Hc, _- (Nno +/_T), g.

(G.2.27)

(G.2.28)

(G.2.29)

(G.2.30)

Then, it follows from (G.2.24) and (G.2.26) that

i)Ac t _(k,k) 2bc,kt . r_(k) ]r./ [k H_ot(:, k)e(n_)T]
Obc,kt - uc,kt_n_ xn, + 7-"--°Jktcn_JB,,kk,'row_ , :)+

+ fiB, * [Bc(:,t)e_ )T + e(k,)Bc(:,t) T]

cOA_ _ _(t,t) _ 2f_,_tle_)H,o_(t,: ) + H¢o,(:,t)e_) T]
OCc,k----_t-- Cc'ktaC_n'xn" JB,,tt

+ fic° *[_)Cc(k,:)+ Cc(k,._T.,_(_)T].,

(G.2.31

(G.2.32)
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Note that _ only has nonzero entries in the k th row axtcl column, while _ only has nonzero
_)b¢,_ t _c_,_ t

entries in the t th row and column.
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Abstract

The minimal dimension of a linear-quadratic-gaussian (LQG) compensator is almost always

equal to the dimension of the design plant. This deficiency can lead to implementation problems

when considering control design for high-order systems such as flexible structures and has led to

the development of methodologies for the design of optimal (or near optimal) controllers whose

dimension is less than that of the design plant. This paper presents a new (gradient-based) ho-

motopy algorithm for the design of reduced-order, H._ optimal controllers. An important result is

the development of an e_cicnt methodology for computation of the of the cost functional Hessian

which is required by the aJgorithm. The optimal controller is represented by a parameter vector

and various parameterizations of the optimal controller are considered to reduce the algorithm

dimensionality. The algorithm has been implemented in MATLAB and the results are illustrated

using a benchmark, non-collocated flexible structnre control problem. It is seen that the choice of a

particular controller parameterization often introduces numerical ill-conditioning in the algorithm

implementation.

"Supported in part by SANDIA National Laboratories under contract 54-7609 and NASA under
contract NAS8-38575.





1. Introduction and Nomenclature

The linear-quadratic-gaussian (LQG)compensator (Athans 1971, Kwakerna_k and Sivan 1972)

has been developed to facilitate the design of control laws for multi-input multi-output (MIMO)

systems. An LQG compensator minimizes a quadratic performance index and (under mild condi-

tions) is guaranteed to yield an internally stable closed-loop system. Unfortunately, however, the

minimal dimension of an LQG compensator is almost always equal to the dimension of the plant

and can thus often violate practical implementation constraints on controller order. This deficiency

is especially highlighted when considering control-design for high-order systems such as flexible

space structures. Hence, a very relevant area of research is the development of methodologies that

will enable the design of optimal controllers whose dimension is less than that of the design plant

(i.e., reduced-order control]ers).

Two m_n approaches have been developed to tackle the reduced-order design problem. The

first approach attempts to develop approximations to the optimal reduced-order controller by reduc-

ing the dimension of an LQG controller (Yousuff and Skelton 1984a, Yousuff and Skelton 1984b,

Anderson and Liu 1989, De Villemagne and Skelton 1988, Liu, Anderson and Ly 1990). These

methods are attractive because they require relatively little computation and should be used if

possible. Unfortunately, they tend to yield controllers that either destabilize the system or have

poor performance as the requested controller dimension is decreased and/or the requested authority

level is increased. Hence, if used in isolation, these methods do not yield a reliable methodology

for reduced-order design.

The second approach attempts to directly synthesize an optimal, reduced-order controller by

a numerical optimization scheme (Levine, Johnson and Athans 1971, Martin and Bryson 1980,

Mukhopadhyay, ,_ewsom and Abel 1982, Ly, Brysib and Cannon 1985, Mukhopadhyav 1987, Kuhn

and Schmidt 19S7. Richter 1987, Makila and Toivonen 1987, Kramer and Calise 1988, Mukhopad-

hyay 1989, Richter and Collins 1989, Mercadal 1991 ). Almost all of these schemes are gradient-based

parameter optimization approaches; that is, they represent the controller by some parameter vector

and attempt to find a vector for which the gradient of the cost functional is zero.

With the exception of Mercadal 1991, all of the previous, gradient-based optimization tech-

niques are descent methods. That is, at each iteration the cost function is decreased. An alternative

(Mercadal 1991) is to develop a gradient-based homotopy algorithm that allows an initial controller

to be deformed gradually into a desired optimal control]er by following a homotopy path. This type

of algorithm is distinct from the previous algorithms in that each iteration does not necessarily de-

crease the cost function. In fact, the cost may actually increase as tl,e homotopy path is traversed.



However, it is quite possible that the shortest path from the initial controller to the desired optimal

controller is not a descent path.

Efficient path following requires accurate computation of the Hessian of the cost functional.

Hence, this paper develops an e._icient method for computing the Hessian. An alternative method

for computing the Hessian is presented in an earlier publication (Sun 1991). However, to our

knowledge, this previous method, based on the results of Sun 1990, does not exploit certain low

rank matrices as does the method presented here.

A homotopy algorithm for optimal reduced-order design is described in Richter 1987 and Richter

and Collins 1989. This algorithm is based on solving a set of "opt.imal projection" equations (Hyland

and Bernstein 1984, Haddad 1987) that are a characterization of the necessary conditions for

optimal reduced-order control. Unfortllnately, the algorithm has sublinear convergence properties

and the convergence slows at higher control authority levels and may fail. Homotopy algorithms

for optimal reduced-order modeling, based on optimal projection equations, are discussed in Zigic

et al. 1992 and Zigic et al. 1993. These algorithms are based on more efficient path following

techniques but are relatively, slow due to the large dimensionality of the algorithm formulation.

This paper describes a homotopy algorithm for the design of reduced-order, H2 optimal con-

trollers which is not ba._ed on the optimal projection equations. The algorithm relies on the first

and second derivatives (i.e., the gradient and Hessian) of the cost functional with respect to a pa-

rameter vector describing the controller aIld an efficient methodology" for computing the Hessian is

developed. To reduce the dimensionality of the algorithm, various parameterizations of the optimal

controller are considered. The algorithm has the potential for quadratic convergence rates along

the homotopy curve. The results have been implemented in MATLAB and are illustrated using

a benchmark, non-collocated flexible structure control problem. It is seen that the choice of a

particular controller parameterization often introdllces numerical ill-conditioning in the algorithm

implementation. The algorithm presented here is similar to that described in Mercadal 1991. How-

ever, whereas Mercadal 1991 focuses on theoretical issues related to homotopies and only describes

a rudimentary homotopy algorithm, the present paper focusses on numerical algorithmic issues and

describes a much more refined axed efficient homotopy algorithm.

The paper is organized as follows. Sectiolk 2 describes the H2 optimal reduced order dynamic

compensation problem. Section 3 gives a brief overview of homotopy methods. Section 4 then

develops a homotopy algorithm for the design of reduced-order Ito optimal controllers. Section 5

applies the algorithm to a benchmark slructural control problem and compares various algorithm

options. Finally, Section 6 presents the conclusiolis.
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Nomenclature

Y>Z

Y>Z

zij, Zi,j or Z(i,j)

L

trZ

E :2

z(k,:)

z(:,k)

I" - Z is nonnegative definite

Y - Z is positive definite

(i,j) element of matrix Z

r x r identity matrix

trace of square matrix Z

the invertible linear operator defined such that

vec(s) " [s T s T T T IRpxq= ...%] , S e

where s) E _P denotes the jth column of S.

the m-dimensional column vector whose ith element

equals one and whose additional elements are zeros.

the m x n matrix whose (k,l) element equals one
and whose additional elements are zeros.

k th row of the matrix Z

(MATLAB notation>

k th column of the matrix Z

(MATLAB notation>

2. H2 Optimal Reduced-Order Dynamic Compensation

}(t) = Az(t) + Bu(t) + wl(t)

y(t) = Cx(t) + Du(t) + w_(t)

Consider the system

(2.1a)

(2.1b)

where z E IR'_',u E IR'_',y E ]R%,wl E IR '_" is white disturbance noise with intensity V1 _>

0, w_ E IR % is white observation noise with intensity V_ > 0, and wl and w_ have cross correlation

VI__ E IR n" xn,. We desire to design a fixed-order dynamic compensator,

zc(t) = Acxc(t) + Bey(t) (2.2a)

v(t) : -Ccxc(t) (2.2b)

which minimizes the steady-state performance criterion

J(Ac, B_,Cc) a= lim E[_T(t)Rl:r(t) + 2_T(t)Rl,u(t) + uT(t)R2u(t)] (2.3>

3



where xc E IR"_,nc <_ n, R1 = R T >_ 0 and R_ = R T > O. We will call this problem the optimal

reduced-order dynamic compensation problem.

The closed-loop system corresponding to (2.1) and (2.2) can be expressed as

_(t) = _i_(,)+ _(_) (2.4)

where

Lx0(t)J'

/i"[ A- B_C

In addition, the cost (2.3) can be expressed as

f
ID1 (t) 1

_(t) _A [ (2.5,6, 7)

-BC_ ] (2.8)Ac - B_DC_ "

where

s(ao,Bc,cc) = nm E[_.T(Ok_(t)]
t---*¢0

(2.9)

k__[ R, R,2Cc]cyRT_cyR_co" (2.1o)

To guarantee that the cost J is finite and independent of initial conditions we restrict our

attention to the set of stabilizing compensators, Sc _ {(Ac, Bc,Cc):.4 is asymptotically stable}.

Assume (Ac, Be,Co) E Sc and define 0 E IR"'x"" and P E HI"'x"" to be the closed-loop steady-

state covariance and its dual, i.e.,

where

Then, the cost can be expressed as

(2.11)

(2.12)

re' _ B B_V2BT . (2.13)

J(A_,Bo,Cc)= tr Ok = tr Pg. (2.14)

Also, Q and/3 can be expressed in the partitioned forms

o:
[0,: Q:2 J'

Q,, E lit "'x'_', Qn E IR "'x"" (2.15)

A,m,"'_"-, P_ Em"'_"'. (2.x_)



Notice that 011 is the covariance of the plant states, 02._ is the covariance of the compensator

states and 012 is the cross-covariance of the plant and controller states.

Expressions for the partial derivatives _ _ and _ are given below. First, we define Z,
@A, ' aB, ' aC, '

satisfying

and assign 2 the partitioned form

z.l2= 2il Zi2J'

2 =0P (2.I7)

The cost derivatives are then given by

211 E IR "x"', 2:2 E I_ "'x"', (2.I8)

_)J - 22% (2.19)
OAc

OJ

OBc - 2(/5_gI: + h2BcV2 + zTc T- zTCTD T)

OJ
D B_2_)TC = 2(-RT_0,_+R_co0;_- B_2_ - _ _

Definition 2.1. A compensator (A_,Bc,C_) is an eztremal of the optimal reduced-order

dynamic compensation problem if it satisfies the stationary conditions

OJ ¢9J aJ

oA----:= o, OB---:: 0, at'---:= 0 (2.22)

The homotopy algorithm of Section 4 is based on finding extremals of the optimal reduced-order

dynamic compensation problem.

3. Homotopy Methods for the Solution of Nonlinear Algebraic Equations

A "homotopy" is a continuous deformation of one flmction into another. Over the past several

years, homotopy or continuation methods (whose mathematical basis is algebraic topology amd

differential topology (Lloyd 1978)) have received significant attention in the mathematics litera-

ture and have been applied successfiflly to several important problems (Avila 1874, Waxker 1978,

Alexander and Yorke 1978, Garcia and Zangwill 1981, Eaves, Gould, Peoitgen, and Todd 1983,

Watson, 1986). Recently, tile engineering literature has also begun to recognize the utility of these

methods for engineering applications (sec e.g. Richter and DeCarlo 1983, Richter and DeCarlo

1984, Turner and Chun 1984, Dunyak, Junkins, and Watson 1984, Lefebvre, ILichter and DeC_rlo

1985, Sebok, Richter, and Decarlo 1986, Horta, Juang and Junkins 1986, Kabamba, Longman and



Jian-Guo 1987, Shin, Raftka, Watson, and Plautt 1988, Rakowska, Haftka, and Watson 1991)).

The purpose of this section is to provide a very brief description of homotopy methods for finding

the solutions of nonlinear algebraic equations. The reader is referred to (Watson 1986, Richter and

DeCarlo 1983, Watson 1987, Watson 1986) for additional details.

The basic problem is as follows. Given sets e and @ contained in IR n and a mapping F : e _ @,

lind solutions to

F(e) = 0. (3.1)

Homotopy methods embed the problem (3.1) in a larger problem. In particular let H : e x [0,1] --.

IR n be such that:

1) H(e, 1) = F(8). (3.2)

2) There exists at least one known 80 e IR '_ which is a solution to H(-,0) = 0, i.e.,

H(0o,0) = 0. (3.3)

3) There exists a continuous curve (0(A), A) in IR" x [0, 1] such that

H(e(A),A) -- 0 for A E [0,1] (3.4)

with

(0(0),0)= (0o,0). (3.5)

4) The space O x [0, 1] has a differential structure so that the curve (e(A), A) is differentiable.

A homotopy algorithm then constructs a procedure to compute the actual curve a such that the

initial solution 0(0) is transformed to a desired solution 0(1) satisfying

0- H(8(1),I)- F(8(I)). (3.6)

Differentiating H(e(A), A) = 0 with respect to A yields Davidenko's differential equation

OH dO OH

O-"ffd-'_ % _ = 0. (3.7)

Together with 0(0) = 80, (3.7) defines an initial value problem which by numerical integration from

0 to 1 yields the desired solution 0(1). Some numerical integration schemes are described in Watson

1986 and Watson 1987).



4. A Homotopy Algorithm for H._ Optimal Reduced-Order Dynamic

Compensation

This section presents a new homotopy algorithm that can be used to design H_ optimal reduced-

order dynamic compensators. Particular attention is given to construction of the Jacobian of the

homotopy map.

4.1 The Homotopy Map

If we define

vec(Ac)"8g vec(Bc) , (4.1)

Lvec(Cc ) :

then the cost functional of Section 2 can be expressed as J(O). The homotopy defined in this section

is based on finding 0 satisfying

It is useful to recognize that

Expressions for the partial derivatives as
8A,

o = f(o) " .io..__z(= o).
¢Ju

verdi_qJ vec 8.b._" •

0"8= vecb_,

os and 8.], oB, _ are given by (2.19)-(? 21).

(4.2)

(4.3)

Definition of the homotopy map H(8, A)

To define the homotopy map we a-ssume that the plant matrices (A, B, C, D), the cost weighting

matrices (R1, R2, R12) and the disturbance matrices (V l, V2, Vl_) are functions of the homotopy

parameter A E [0, 1]. In particular, it is assumed that

BI )I [c: Bo A,

where

and LR,0 and LR,/ satisfy

[ R,(,_) R,_(_)]

LR(A) = LR,o + A(LR,y - LR,o)

LRoL]o = [ -e,,o' ' LRT ,o

t 12,!

(4.5)

(4.6)

R] 2,0

R2,o ] (4.7)

R,_,!] (4.8)R2,I '



where

and Lv, o and Lv,! satisfy

v_CA)v_2(A)]= Lv(A)LZv(A)
V_(_)vICA)J (4.9)

Lv(A) = Lv.o+ A(Lv,/- Lv.o) (4.10)

[ v1.0 v_2.0] (4.11)tv.ot_.o= [Vg,oV2.o

=[v,,, (4 2)LV&r v2,.,j"

Note that (4.4)-(4.12)imply that A(0) = Ao and A(1) = A!, B(O) = Bo and B(1) = BI, etc ...

and itisunderstood that AI,BI,... were referredto previouslysimply as A,B, ....The change in

notation issimply forconvenience.

Let ]_(A), Q(A) and Z(A) satisfy

0= ,i(A)zP(A)+ P(A)_(A)+ k(A)

0= _(A)¢(A)+0(A)_(A)z+ P(A)

2(_) = 0(_)P(_)

(4.13)

(4.14)

(4.15)

with partitioned forms

o,,¢..,)]F(,_)=L,%(,_)&_(,_)' 0(,_)=LCT:(A)O,2(A)' L2,,(A) z22(A)J (4.16)

where the (1,1) and (2,2) blocks of each matrix are respectively nx x n= and nc x n:. The homotopy

map H(O, A) is defined as the gradient of the cost of the system defined by the homotopy parameter

A. In particular,

vec(H,,.. (8, A)) "]
H(9, A) g vec(HB,(8,A)) l (4.17)

vec(_c,(e,_))J
where

H_.(e,,x)=22_

He,(e,A)= 2(/'_v_ + P2.BcV2.+ 2_cT- z_2c_"r"rDT)

,He,(e,_) = 2(-R_O,2+n_c_Q_- _2_ - DT_'r-a'Z2_)

(4._s)

(4.19)

(4.20)

Note that in (4.18)-(4.20) and below the argument A is omitted for notational convenience.



4.2 The Jacobian of the Homotopy Map

Wenow considerthat computationof _TH(O, A)T, the Jacobian of H(O, A). Note that

vH(o, ) T = [Ho (4.21)

where

OH _ OH

He = "_, Hx = "_. (4.22)

Since H(e, A) is the gradient for the system defined by A, He is the corresponding Hessian. Recalling

that e is defined by (4.1), such that for some integers k and t, 0j is given by

ej = ac.,t, Oj = bc,tt, ej = cc.kt, or ej = dc.kt. (4.23)

It follows from (4.13) that H# is of the form

He= .vec(sa_._,HB,). vec(sb_._HB,)-vec(sc_._,HB,) (4.24)

•vec(o_Hc,), vec(_Hc,), vec(or_._ Hc,),

and Hx can be expressed as

[vec(b_HA'i]H_ = | vec(_9-_xliB, . (4.25)

Lvec(_ Hc,

Below, we develop explicit expression for the derivative terms appearing on the right hand sides of

(4.20) and (4.21). We use the notation

M(j) =_ OM
00j (4.26)

_._ =" __OM (4.27)
OA"

Differentiating (4.13)-(4.15) with respect to ej yiehls

0 = ,_Tp(j) + P(J)A + (A(J)TP q- PA (j) q- k (j))

0 -- AO (j} q" ¢(J)A T 4- (A(J)(_ + 0A (j)T + _'(J))

(4.28)

(4.29)

(4.30)

where expressions for the derivatives /l(J), ]_(J) and l)(J) are given by (A.20)-(A.28) of Appendix

A. Similarly, differentiating (4.13)-(4.15) with respect to A yields

. . ".. •

0 = /_Tj6 + jS_ + (._Tp + PA + R) (4.31)

0 = A(_ + (_T + (_(_ + (_A T + I_') (4.32)

" . . L

Z = QP + QP (4.33)



whereexpressions for .4, R and V are given by (A.29)-(A.33) of Appendix A.

Before presenting the desired derivative expressions we define

H' (2(") "=
A¢

_(j)T pT _ _(j)T f,T nT
H_3,(15(j),_(j)) _A 2(f)_j)Tv12 + jS_)BcV 2 +"12 "" --22 "-'¢ "" !

/_[C.((_(J),Z(J)) "9/-'_,--'_I2_12DT f_(J) "{"R20c¢_ ) - "-"T_(j)T--21-- A../3Ti_T _(J)TIJ.,c "22 /

(4.34)

(4.35)

(4.36)

Notice that the right hand sides of (4.34)-(4.36) are identical in form to the fight ha_d sides

of (4.18)-(4.20). The only difference is that P,Q, and Z have been replaced by/3(j),_(j) and Z(J)

Derivatives with respect to a¢itt

Differentiating (4.18)-(4.20) with respect to ac.kt(= 0j) gives

OHA_ , (_(j)) (4.37)
Oae,kt = H Ac

OHB_ , (]Sfj),_(j)) (4.38)
Oac,kt = tlB"

OHc......._= H_, ((_(J), 2 (j)). (4.39)
Oac,kt

Derivatives with respect to bc.kt

Differentiating (4.18)-(4.20) with respect to bc,kt(= 8j) gives

0HA, _ H'
Obc.,e A,

OHBc , (jS(j),2(j)) 2/322 L.(_,t) I:
Obc.kt = HB" + [_n, x., v2

(4.40)

(4.41)

OHc. _ Hb,(f_(J),Z(_))- °nT_("_) _T.
Obc,kt "_ _'.. x,_.

(4.42)

Derivatives with Respect to cc,kt

Differentiating (4.18)-(4.20) with respect to co.,e(= 0_) gives the following.

OHA_ = H' (Z{J))
OCc,kt A,

OHB. , (p(j) _(j) o_T r(e,*) D T
OCc,kt = HB" ' ) -- "_2"_"c x""

(4.43)

(4.44)

^--(k,t) ._

O_Cc,kl
(4.45)

10



Derivatives with respect to )`

Differentiating (4.18)-(4.20) with respect to )` gives

(gHA¢ -- H t -
(9)` A=(Z) (4.46)

(gliB,(9),- HB' ('_' _') + 2(PT _'n + .PnB,,T/2 + _T_?T -- _9_cT/_ 'I') (4.47)

(glic. ' - " R:C_22 bT2_ "T T'T
(9), = HC,(Q,Z)+ 2(-RT2(_12 4- 4- - D B c Z_2) (4.48)

where from (4.4)-(4.12)

where

where

coc,"'°]co (4.49)

(4.so)

I_R = LR,y - La,o (4.51)

f_T v2J = L'vLv_+ LvL'vT (4.52)

Lv = Lv,! - Lv,o. (4.53)

Hs can now be computed using (4.24) and (4.37)-(4.45).

Note that the calculation of the jth column of Hs requires the computation of the Lyaptmov

equations described by (4.28) and (4.29). Significant computational savings can be made by solving

these Lyapunov equations in a basis in which the closed-loop state matrix A is nearly diagonal (i.e.,

a modal form) or nearly block triangular (i.e., a Schur form). This requires transforming the

corresponding forcing terms into this basis which can be costly if the dimension of the closed-loop

system, net(= n:_ + no) is large. In fact, if the forcing terms are dense, this transformation requires

2n_t operations. Fortunately, it is seen by (A.20)-(A.28) of Appendix A that these forcing terms

are low rank. Hence, these transformations do not have to be expensive and often require only

about 2n_ operations. Computation of the expressions (4.37)-(4.45) requires the solutions of the

Lyapunov equations in their original basis. However, it is not efficient to numerically perform this

transformation before substituting into (4.37)-(4.45). Instead, symbolic substitution and judicious

choice of the order of matrix multiplications can result in significant computational savings. The

details of efficient computation of Ha are presented in Appendix B.

ll



t

H_ is computed using (4.25) and (4.46)-(4.48). This requires computation of the Lyapunov

equations (4.31) and (4.32). The forcing terms for these Lyapunov equations are not sparse so

that computing Hx in a particular basis requires 2n3ct operations to transform the forcing terms.

However, the rest of the optimization associated with the computation of He does apply to the

computation of H_.

4.3 Reduction of the Dimension of the Controller Parameter Vector (0)

The homotopy function H(O, A), described earlier, was defined to solve the H2 optimal reduced-

order dynamic compensation problem. The vector 0 was defined such that it contained each of the

elements of the controller matrices, Ac, Bc and Co. However, for computational efficiency it is

desired that 0 be as small as possible. Hence, we desire to represent the controller matrix with the

fewest parameters possible (i.e., we desire 0 to have the smallest dimension possible). The minimal

number of parameters P,,in with which a compensator can be represented is given by (Martin and

Bryson 1980, Denery 1971)

Pmi,,= no(n + ny) (4.54)

One canonical form which allows representation of a controller with a minimal number of

parameters is the modal form described in (Martin and Bryson 1980). This form will be called

here the Second-Order Polynomial (SP) form. Fox this parameterization a triple (A_, Be, Co) has

the following structure.

A_ = block- diag{Aca,Ac.2...,At,r} (4.55)

where A_._ fi IR""" for i fi {1,2 .... ,r} and each A_._ (with tl,e exception of A_,, if the row

dimension of A_ is odd) l,as the form

Ac_=[O 1 ], _(._) (4.56)
L cJc.i ffc,i

to allow for either a complex conjugate set of poles or two real poles. Bc is completely full _nd

= [Cc.l, .... C .r] (4.60)

where Cc,i has the form

Cc,r = • (4.57)
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Thecontrollercanonicalformdescribedin Kailath 1980alsoallowsrepresentationof a controller

with a minimal number of parameters. For single-input, single-output (SISO) systems in controller

canonical form the Ac matrix is a companion matrix. In particular, Ac has the form

[!0000!lAo= 0 0 1 . (4.s8)
• . *

• * * ...

In addition,

IiBc = (4.59)

and Cc is completely full. A dual form of the controller canonical form is the observable canonical

form (Kailath 1980).

It is also possible to represent the controller in a basis where the number of free parameters p

satisfies

Pmin < P < Pmax _ nc(rtc + rtu + rtll). (4.60)

One such basis is the tridiagonal basis (Geist 1991, Parlett 1992) in which the controller state

matrix is constrained to have nonzero elements only on the diagonal, the super-diagonal and the

AC "_

sub-diagonal. That is,

:.

* * 0

"

Bc and Cc are completely full. For this form the number of free parameters is given by

(4.61)

P = P,,,in + (3no -- 2)

A common feature of each of the above bases is that they are described by simply constraining

certain elements of the controller (or plant) matrices to conslant values (e.g., 1 or 0) while allowing

the remaining parameters to have arbitrary values (A_, Be, C_). Hence, the corresponding parameter

vector (Op), gradien_ vector (Je,p) and ltessian matrix (He,r) are given by

8p = F0 (4.62)

de,p = FJe (4.63)

Hs,p = FH, F T (4.64)

13



J0,_ = r J0 (4.63)

Hs,p = FHoF T (4.64)

where r is an elementalmatrix (i.e.,each row has only one nonzero element and thiselement has

unity value).It should be noted here that//e,pcan be computed more efficientlythan shown in

(4.64).Since itisnot necessaryto constructthe largeHessian Ho to compute the smallerHessian

Ho,_.

4.4 Overview of the Homotopy Algorithm

This section describes the general logic and features of the homotopy algorithm for H2 optimal

reduced-order control. It is assumed that the designer has supplied a set of system matrices,

$1 = (A I , B I , C / , D I, RI,1, R2,I, Rn,y , I;1,1, V2,1, Vn,.f) describing the optimization problem whose

solution is desired. In addition, it is assumed that the designer has chosen an initial set of related

system matrices So = (A0, B0, Co, Do, R, ,0, R2,0, R,2,0, V1,0, V2.0, V12,0) that has an easily obtained

optimal controller (At,0, Bc,0,Cc,0)of order no.

It is always possible to choose the initial system So such that (A0, B0, Co, Do) in nonminirnial

with minimal dimension no. In this case, it is easy to show that the corresponding LQG compensator

has minimal dimension nr _< nc and will usually have minimal dimension nr = no. In the latter

case, (At,0, Bc,o,Cc,o, De,0) is chosen as a minimal realization of the LQG compensator. However,

we have seen experimentally that the corresponding homotopy can lead to failure of the homotopy

algorithm. Similar observations have been made by Mercadal (Mercadal 1991). In particular,

Mercadal has shown that allowing the plant parameters to vary along tile homotopy path can lead

to the development of destabilhing controllers or path bifllrcations.

That the above type of homotopy wouhl cause problems is somewhat intuitive since for a given

A, say A1 6 [0,1], a controller (Ac(A1).Bc(A1),Cc(A1)) that stabilizes the plant (A(A1),B(AI),

C(AI), D(A, )) may not stabilize the plant (A(Aa), B(A2 ), C(A2), D(A2)) for A_ _ AI. Hence, below

we present ways of constructing the initial system So that does not require the plant paramaters

(A,B,C,D) to vary along the homotopy path. In this case, a controller that stabilizes the plant at

A1 will also stabilize the plant at A2 > A1. This argument in itself does not ensure that at every

step along the homotopy algorithm the controller design remains stabilizing. This is a subject that

requires further research. It shouhl l_e mentioned that another advantage of a homotopy that varies

only the performance weights (R_,R2,Rn, V1,V2,Vn) is that the optim,_l controller at each point

is optimal with respect to the real nominal plant (AI, B.f,CI, DI).
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Now,we present three options for constructing So and hence defining the homotopy.

Option 1. One alternative for constructing So is to choose A0 to be stable (e.g., if A! is stable,

let Ao = A! or if A! is unstable, let Ao = A 1 - a1 where a is sufficiently large to ensure stability of

Ao), and let either R1,0 or V1,0 be zero with all other parameters equal to their final values. In this

case (Ae,o, Bc,0,Cc.0) is chosen such that it's input-output map is zero, i.e., Ce.o(sI,,, -Ae,o)-XBc,o

=0.

Option 2. Another alternative is to choose Ao to be stable and as elaborated in (Collins,

Haddad, and Ying 1993) and choose either (Rl,0,V2,0) or (V_.o,R2,o) as given below. (Again, all

other initial parameters are equal to their finaJ values.)

(i) In a basis in which

[(Aohl 0 ], (Aoht _ IR"'x'_" (4.65)Ao = [(Ao)21 (Ao)22

choose RL0 to be of the form

[(R,.ohl 0] (R1,o)1, e IR"'x'" (4.66)R2,o= 0 0 '

and for some positive scalar o choose

$_.0 = _1:_,! (4.67)

(ii) In a basis in which

Ao = [(Ao)ll0

choose Vl,o to be of the form

[(Vl,oh 1
1:1

tO I 0

and forsome positivescalarcYchoose

(Ao)12 1 _" _',
(Ao)22 J , (Ao)11 E (4.68)

O|1 (1fi,o)11 E IR"" x_, (4.69)
0 j '

R2 = oR._,j (4.70)

As discussed in (Collins, lladdad, and Ying 1993), _, in (4.67) or (4.70) can always be chosen

sufficiently large that the corresponding LQG compensator is nearly nonminimal. In this case, a

very close approximation to (A,,0,Bc.0, Ce.0) is easily obtained by reducing the LQG compensator

to it's (nearly) minimal realization using an appropriate technique such as balanced controller
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reduction (Yousuff and Skelton 1984). This initialization option can sometimes present a shorter

path to optimal solution than the first option given above.

Option 3. A third alternative (which does not require A0 to be stable) is based on the following

experimental observation. The initial system can be chosen to correspond to a low authority control

problem, "e.g., one can choose

R2,o = oR2,], l_,o = _V2,! (4.71)

with o and ]_ large and let all other initial system parameters equal their final values. In this case

it has been observed that the reduced-order controller (Ac,_,Bc,_,Cc,r) obtained by suboptimal

reduction of an LQG controller will often yield virtually the same cost as the LQG controller (see,

e.g., De Villemagne and Skelton 1988), hence indicating that (Ac,r,Bc,_, Co,r) is nearly optimal. In

this case we choose (At.0, Be.0, C'c.0) = (Ac._, Bc,_, Cc,_). It should be noted that these observations

are partially (but not fully) explained by the results of (Collins, Haddaxt, and Ying 1993).

Below, we present an outline of the homotopy algorithm. This algorithm describes a predic-

tor/corrector numerical integration scheme. There are several options to be chosen initially. These

options are enumerated before presentin G the actual algorithm. Notice that each option corresponds

to a particular flag being assigned some integer value.

10



+ = 0.

If p = Pmin, l'/e,p is generally invertible, then e_,(A) is given exactly by

= -1-//e.p//_.

Controller Basis Options:

basis = 0. No basis (i.e., all elements of the controller matrices are considered free.)

basis = 1. Tridiagonal Basis.

basis = 2. Second-Order Polynomial Form.

basis = 3. Controllable Canonical Form.

Note that for basis = 0 or 1, p > Pmin while for basis = 2 or 3, p = Pmin.

Prediction Scheme Options:

Here we use the notation that A0,A_I, and A1 represent the values of A at respectively the

current point on the homotopy curve, the previous point and the next point. Also, 0p_ = dOp/dA

and is the solution of Davidenko's differential equation (4.7), rewritten here as

(4.72)

(4.73)

If p > Pmin, then He.r generally has rank Pmin and 8_,()_) is approximated by the least squares

solution of (4.73) or

[ 00]Op = -V E°I uTIt_ (4.74)
0

where it is assumed tile How has the singular value decomposition

H'v=U[E°' 0 _] VT' _°EIR'"'x_'""" (4.75)

Note that for p = Pmin (4.73) and (4.74) are equivalent.

pred = 0. No prediction. This option assumes that 0r(Al ) = 0p(A0).

pred = 1. Linear prediction. This option assumes predicts at(A1) using only 0p(Ao) and Op'(Ao).

In particular,

Op(Al) = 8,,(Ao)+ (A1 - Ao)8;/(Ao) (4.76)

pred = 2. Cubic spline prediction. This option predicts 0p()q) using 0p(Ao), 0v'(Ao), 0p(A_l)

and 0p_(A_l). In particular,

St(At) = ao + o]A1 + o._Al2+ aaA13 (4.77)
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where a0, az, a2 and oa are computed by solving

o.0 _1 _/2 _/3] r i 0 1 ]
A__] 1 Ao 01

A.] 2A_1 ,xo_ 2Ao

)"

Op(,Xo)
(4.78)

Note that if this option is chosen, then at the initial algorithm prediction step 0p(A_z) and

0_(),-z) are not available, in which case linear prediction is used.

Correction Options:

Here we assume that the homotopy parameter has a fixed value A0. The vector 0p represents

the current approximation of the parameter vector at A = A0. Each of the options corresponds to

updating 8p using the formula

where

0p,- 0p +A0p (4.79)

AOp = -Go,_Joa, (4.80)

for some choice of Ge,p.

corr = 1. Newton correction. In this option, if p = p,,,i,,,

Ge,r = Ho.r -z (4.81)

Ge,p = V(E _ + o2I)-ZEU T

while if p > Pmin,

(4.82)

where a is some (small) scalar and (U,V, _) denote the singular value decomposition of Hs,p

such that

He,r = UEV y. (4.83)

It can be shown that if G6,p is given by (4.82), then AOr minimizes

[ll / .,A0p + 0,1r"+ o'll 0,ll']. (4.84)

Hence, A0p is essentially a "Newton correction" that is relatively insensitive to singularities or

near singularities in the Hessian, He,_.

corr= 2. Quasi-Newton correction. In this option, Gea, denotes the estimate of It_,,_ using

only gradient and cost information. For the algorithm presented here the BFGS inverse Hessian

update is used (Fletcher 1987).
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Outline of the Homotopy Algorithm

Step 1. If basis > 1, then transform the initial controller (At.0, Be.0, C_.0) to the chosen basis

and let 80,p be the corresponding vector of free parameters.

Step 2. Initialize loop = 0, ,_ = 0, A,_ E (0, 1], S = So, 8p = 80.p and compute the cost J

and the cost gradient de.p corresponding to S and the controller described by 8p.

Step 3. Let loop = loop+l. If loop = 1, then go to Step 5. Else, continue.

Step 4. Advance the homotopy parameter and predict the corresponding parameter vector 0

as follows.

4a. Let ,_0 = A

4b. Let A = A0 + AA.

4c. If pred _> 1, then compute 8_(,_0).

4d. Predict 8p(A) by using the option defined by pred.

4e. If the normahzed gradient Js,pllC0,pll/ll0rl I satisfies some preassigned tolerance, then

continue. Else, reduce A_, and go to Step 4b.

Step 5. Correct the current approximation 8p to the optimization problem defined by S using

the option defined by corr until the normalized gradient,

Js, llCe. ll
IIO,II (4.85)

satisfies some preassigned tolerance.

Step 6. If ,_ = 1, then stop. Else, go to Step 3.

The above algorithm a.ssumes monotonicity of the solution curve as a function of the homotopy

parameter A. ]Iowever, it is not difficult to modify the algorithm so that the variable parameter is

the arc length as discussed in Watson 108fi anti Watson 1087 since this modification would still only

require the computation of H0 and H_. The modified algorithm would not require monotonicity of

the solution curve. However, so far in our computational experience the solution curve has always

been monotonic.

Note that if p = p,,i,, and corr = 1, then the corrections of Step 5 correspond to Newton

corrections. Hence if the prediction tolerance used in Step 4 is sufficiently small, then, entering
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Step 5, 0p will be close enough to the optimal value 0_ so that the quadratic convergence proper-

ties of Newton's method (Fletcher 1987) can be realized. In practice, this quadratic convergence

property is not always realized due to numericM ill-conditioning associated with the minimal pa-

rameterization of the controller. This ill-conditioning is illustrated and discussed further below.

5. Illustration of Reduced-Order Design Using a Four Disk Example

This section illustrates the homotopy algorithm of Section 5 by considering control design for

an axial beam with four disks attached as shown in Figure 5.1. This example was derived from

a laboratory experiment described in (Cannon and Rosenthal 1984) and has been considered in

several subsequent publications [Anderson and Liu 1989, De Villemagne and Skelton 1988, Liu,

Anderson, and Ly 1990, Hyland and Richter 1990). The basic control objective for the four-disk

problem is to control the angular displacement at the location of disk 1 using a torque input at the

location of disk 3. It is also assumed that a torque disturbance enters the system at the location

of disk 3.

The design philosophy adopted here is that the scaling q2 of the nominal control weight R2,0 = 1

and the nominal sensor noise intensity V_,0 = 1 are simply design knobs used to determine the

control authority. (Hence, R2(A) = _:(A)R2,0 and V2(A) = q2(A)V2.0.) The system costs are

computed assuming V2 = 0 although _ = 0 is not assuwed in the design process. This general

philosophy is actually motivated by insights into LQG theory. However, it will suffice here to

simply note that this philosophy was used successfiflly on two hardware experiments involving

control design and implementation [Collins, Phillips, and Hyland 1991, Collins, King, Phillips and

Hyland 1992). It should be noted that these assumptions do not influence the qualitative results

described below.

Below, we will compare various algorithm options. In particular, we desire to illustrate the types

of convergence that are sometimes acl,ieved when various bases are used to represent the controller,

and the speed of the algoritl,m when various prediction options are used. We will also investigate

what type of convergence and speed are achieved when H_"1, the inverse of the Hessian of the cost

is not computed explicitly but is estimated using a Quasi-Newton method. The comparisons are

all based on a MATLAB implementation of the algorithm and the program in each case was run

on a 486, 33 MHz PC.

We choose to base the comparison on 1he design of arl 8th order controller (for the 8th order

design plant). Of course, we can solve for optimal fifll-order controllers using Pdccati equations but

we choose this order controller because experientially we have seen that the higher the order of
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the controilerthe more the algorithmstruggleswhen a particul_ basisischosen forthe controller.

Hence, we are essentiallybasing our comparisons on the worst-casecontrollerorder for thispar-

ticulardesignmodel. The controllerthat isused to initializethe algorithmisthe LQG controller

correspondingto the choiceq_ = 1. The algorithmisused to deform thiscontrollerintothe higher

authoritycontrollercorrespondingto q_ = 0.1.

Table 5.1shows a comparison ofthe algorithmwhen variousbasesare chosen forthe controller.

Linear predictionis used in each case. In fact,it was seen experimentallythat ifcubic spline

predictionwas used,the algorithmperformance degraded ifan over-parameterizedcontrollerbasis

(i.e.,tridiagonalbasisor no basis)was used. This phenomenon isalmost certainlydue to the

factthat in thesecasesthe tangent vectors(0_(A))are only estimated using (4.71)and hence are

not accurate. As evidenced from Table 5.1,the performance of the controllablecanonicalform

was worse in terms of clocktime and minimum and maximum step size.The minimum stepsize

of 7.8e-16indicatessubstantialill-conditioningalong the homotopy path. For thisexample, the

second-orderpolynomial form requiredthe le,_tnumber of flopsalthough itdid requireslightly

more clock time than the tridiag0nalbasis. In terms of minimum and maximum step size,the

choiceof no controllerbasiswas betterconditionedthan restrictionto any of the bases.

Controller Real Time No. Hessian Minimum Maximum

Basis Megaflops (sec.) Calculations Step Size Step Size
None 1098 1098.2 47 0.01 0.32

Tridiagonal 590 880.7 120 0.0003 0.08
SP F 518 930.4 283 0.0001 0.04

CCF 828 1524.7 461 7.8e-16 0.02

Table 5.1. Comparison of Controller Basis Options

Table 5.2 shows a comparison of the algorithm when the second-order polynomial form was

chosen for the controller and various prediction options were used. Notice that in terms of real

time, linear prediction required only 17.8% of the time required when no prediction was used. Cubic

spline prediction required only 5.6% of the time required when no prediction was used. The ability

to predict along the curve described by the changing parameters is one of the practical benefits of

formulating an optimization problem formally in terms of a homotopy.

Prediction

Option
None

Megaflops
3560

Real Time No. Hessiar

(sec.) Calculations
5205.0

Linear 51S 930.4

Cubic 160 293.2

Minimum

Step Size

Maximum

Step Size
1552 6e-15 0.01

283 1.5e-4 0.04

86 0.01 0.08

Correction

Tolerance

I0-4

10-4

I0-6

Table 5.2. Comparison of Prediction Options for SPF Controller Basis
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Figure 5.1. The Four Disk Model.
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Table5.3 shows a comparison of the algorithm when the second-order polynomial form was

chosen for the controller, H_"1 was estimated using a Quasi-Newton (in particular BFGS) method

and various prediction options were used. The %" under the Megaflop heading indicates that

the MATLAB flop counter overflowed and so the flop data is unavailable. Notice that when the

Quasi-Newton method was used, the prediction did not help. This is because of the inaccuracies

in the tangent vectors due to the errors in the estimate of the inverse Hessian. Also note that by

comparing Table 5.2 with Table 5.3, the behavior of the Quasi-Newton method was substantially

worse than the behavior of the algorithm when the Hessian inverse was calculated exactly. In fact

the best clock time for the Quasi-Newton method was 27 times slower than the best clock time

when the inverse Hessian was calculated exactly.

Prediction

Option Megaflops
None *

Linear *

Cubic *

Real Time Minimum Maximum

(sec.) Step Size Step Size
7960.3 1.0e-14 0.01

8011.4 1.0e--14 0.01

8902.1 1.0e--14 0.01

Table 5.3. Comparison of Prediction Options for SPF Controller Basis

with Quasi-Newton Approximation to Inverse Hessian

Figures 5.2 through 5.4 conskler respectively the design of 2nd, 4th and 6th order controllers for

authority levels corresponding to q_ E (1,0.1,0.01,...1.0e - 6) and compare the optimal curves for

an LQG controller, a reduced-order controller obtained by balancing and an optimal reduced-order

controller. In each case, the optimal reduced-order controller performs substantially better than the

balanced controller as the authority level is increased (i.e., q., is decreased). At low authority, the

cost curves of the balanced and optimal controllers coincided, indicating that the two controllers

are probably very similar. In fact the low authority balanced controllers were used to initialize the

homotopy algorithm in the design of the optimal reduced order controllers as discussed in Option

3 of Subsection 4.4. Figure 5.5 compares the optima] controllers of various orders. This type of

figure can be used in practice to determine the order of the controller to be implemented.

6.0 Conclusions

This paper has presented a new homotopy algorithm for the design of H2 optimal reduced-order

controllers. The example of the previous section illustrated some of the features of the various al-

gorithm options. For the test case considered, the option of estimating the inverse Hessian (H_ -2}

via a Quasi-Newton method performed considerably worse than the option of actually comput-

ing the Hessian and inverting it. The results also show the ill-conditioning that can occur when
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a particular basis is chosen for the controller. For example, the second-order polynomial form

was particularly ill-conditioned for the test case. In addition, the tridiagonal basis, which over-

parameterizes the compensator, actually outperformed the second-order polynomial form in terms

of clock time required.

This ill-conditioning is not new. It is well known that restriction to a particular controller

basis can cause numerical ill-conditioning or even instability (Kuhn and Schmidt 1987, Ge, Collins,

Watson, and Davis). At least two solutions are possible. One is to have a family of minimal

controller bases and have the algorithm switch to the basis that is best conditioned (Kuhn and

Schmidt 1987,Ge, Collins, Watson, and Davis). Besides the second-order polynomial form and the

controller canonical form mentioned here, another basis that could be included in this family is

the input normal Riccati basis of (Davis, Collins, and Hodel 1992). As observed here, one can

also use a slightly over parameterized controller basis such as the tridiagonal form. However, even

these bases will not always be well-conditioned. One other option is to augment the cost function

with a term that includes the squares of the free controller elements (Kuhn and Schmidt 1987).

Unfortunately, this alternative requires a cost fimction that is not well motivated physically. In our

opinion, finding practical solutions to ill-conditioning is the fundamental problem in the numerical

computation of optimal reduced-order controllers.
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Appendix A: Closed-Loop Matrix Derivatives

8fl OA 8_
In this appendix we present explicit expressions for the derivatives _ _ and

o.__.where
8A

[vec(Ao)]
o= /vec(Bo)/, (A.X)

Lvec(Co)J

i= [ A -BCc ] (A.2)B_C Ac- BcDCc '

[kll h12] (A.3)k = [k_2 k22 '

where

kll = R1 (A.4a)

R12 = -R12Cc (A.4b)

k22 = CT_RzCc, (A.4c)

and

where

_1 = v_ (A.ea)

l'/'l._ = 1/12B T (A.6b)

fs2_ T. T (A.6c)= B c l_B_ .

It is assumed that the plant matrices (A,B,C,D), the cost weighting matrices (R1,R12,R2)

and the disturbance matrices (1:1, V12, l:z) are the following functions of ,_.

where

[R1(A) R1_.(,_)] = L_(A)LT(A)

LR(,_) = LR,o + A(LR,I - LR,o)

(A.T)

(A.Sa)

(A.8b)
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and LR,o and LR,! satisfy

where

Below, we use the notation

Note that fl'om (A.7)-(A.9)

where

where

/,a,oL_,o [Rl.o R12.o]= [R_2,o R2.o

[R_j R..I ]L"'zL_'I= R_,.I R2,sJ

v,(,_)v_(;,)l= LvC,_)L_(;,)
v_(,_)VT(,_)J

(A._)

(A.B,0

(A.9,,)

Lv(A) = Lv, o + A(Lv,! - Lv, o) (A._)

o aM (A._0)
0A

(A.11)

(A.12a)

L'R = LR,! - LR,o (A.12b)

V12 _,. = L'vLv T + Lv[v T (B.12e)

Lv = Lv.l - Lv.o. (A.12d)

The derivations of the expression for _ o,_ _(,, -_, and _ are primarily based on the application

of the following derivative formulas. It is assumed that X is an m x n matrix and A is an n x p

matrix.
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Derivative Formulas

--CXA = _)A(j, :)
dzij

d
--AX = A(:,i)_(i)
dzij

--CX_A = _7)A(i,:)
dzij

d._AX T = A(:,j)e{pO
dxij

d
--AXB = A(:, i)B(j, :)
dxij

d--_-AXT B = A(:,j)B(I, :)
dxij

(A.14)

(A.lS)

(A.16)

(A.17)

(A.a8)

(A.19)

Derivatives with respect to Oj for Oj = a¢,kt

o](t) (k) T
en, en,

(A.20)

(A.21)

(A.22)

Derivatives with respect to Oj for Oj = bc,kt

_[0Obc.kt e(k)C(t,

ok
"Ob_,kt- 0

of" _ [ oObc,kt SYM

[I_(:,C)- BD_V2(:,t)]e_ )T ]
" T

_., v2(t, :)B_ + Bo 2(. ) ,,. J(k) T V • t c (_)

(A.23)

(A.24)

(A.25)
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Derivatives with respect to 6j for 0j = c¢,kt

D ---

#¢_,kt 0

-B(:,k)e_) T

k.e(t)T-BED(:, ) ,,.

0 [-Rn(:,k)+CTDyR2(:,k)]e_) T

(A._)

(A.27)

(A.2S)

Derivatives with respect to A

where

_= O_
OA

_,,= Ok
0,\

A- Bee

LR,2

-BC,

Rn

(A.2_)

(A_)

where

Hll = _,

R,2 = -k12C_

]
V,2 V2_.

(A.31a)

(A.3_b)

(Am0

(A.32)

L

Vn = 1"/1

: ", T " T I, T BD,_/_B TV,2 = -_12B_ - BD_ I:Be -

(A_)

(A.36b)

(A.36c)
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Appendix B: Efficient Computation of fts

In this appendix we show how to efficiently compute H0, using (4.26) with (4.37)-(4.39),

(4.40)-(4.48), (4.31)-(4.33) and (A.20)-(A.28). First, we assume that @ transforms A E IRn'txn*._

to either, complex modal form or complex Schur form, such that

_-z_,_ = A (B.1)

where A E C "'tx'''t is diagonal or upper triangular. The pre- and post-multiplying (4.31) respec-

tively by _// and _, pre- and post-multiplying (4.32) by respectively _-z and _-H and pre-

post-multiplying (4.33) by T -1 and T give

0 = A'P (D +/5(J)h + (_,(j)'rp + pA(j ) + k(S) )

o = hO(_) + O(J)h"+ (A('O. + OA(j)T + _'(')

(B.2)

(B.3)

(B.4)

where

p(j) = _Mp(j)¢

0(j) = _,-_()(_)¢-z

2 (i) = ¢-' 2(J)

P = ¢'P¢

/_(J) = g, nk(i)_

if(s} = _-,ff(_)_.

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

Next, partition _ as

and partition _-z as

[_l | @1 E _2 E

]

_= @_J , ]]'tn, x,-,,:i,
IR-,xnct (B.13)

(B.14)
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Also,define

-_(_-'hB (B.15)

C' _ C_] (B.16)

k_ _ _R_2 (B.17)

_2 --*(_-1)1v12 (B.lS)

]}c _ (_-1)2Bc (B.19)

0o-*co_2. (B.20)

Now, recallthat M( D =_',AOM where 8j representseitherac,_t,bc,kt,cc,t,t.It then followsfrom

(B.10)-(B.12)and (A.20)-(A.28)that ._(D,k(J) and f'(J)are given as follows.

for Oj -- ac,kt

_i) _ #y_(:,t)#2(k, :)

k (j)= 0

IP(J)= 0

(B.21)

(B.22)

(B.23)

for 8j= bc,kt

A(J)= _.:l(:,k)[0(t,:) + D(t,:)0_]

/_o)= o

P(J) = { [12,2(:, t)- BD_V,.(:,t) +/),V_(:,t)] [(_-')2(:, k)]"}

+{[_..¢:,t)+_o_¢:,t)lr<,-,)_.¢:,k)]"}"

(B.24)

(s.25)

(B.26)

for 0j _- Cc,k/

.4(J)= [])(:,k) + ]}_D(:,k)]_2(t,:)

k_J_= {[_-'):¢t,:)]"[-k,_¢:,k)" + R_.¢_-,:)D_+ R2_k,:)C'_]}

+{[¢_-')._,:)1"[-,_,,:t:,_-)"+_._¢.,:)e_l}"
f'(J) = 0

39

(s.27)



Note that (B.21)-(B.29) allow the transformationof A(J), ]_(D and l_(J)to the modal of Schur

basisto be performance very efficiently.

Now, it follows from (B.5)-(B.7) that

]_(j) = _-xp(j)_-,

2o) = _2(J)q_-*

(B.30)

(B.31)

(B.32)

or, equivalently,

"12 _

'(#-lhnpcj)(#-_.), (#-'.)fpci_(#-'.)2]
(_-,)_pc._)(#-,.), C_-'_)_pcJ)(#-"),,j

.1,'_'(_,-'), _,,,cJ'(.-'), ].
_2¢.0(_-n)_ _2¢#)(_-_)_

(B.33)

(B.34)

(B.35)

Itfollowsfrom (4.37),(B.35),and (B.4) that

(B.36)

It follows from (4.38), (B.33), (B.35), (B.13), (B.14), and (B.16)-(B.18) that

(B.37)

where

CHBC _-C - DCc.

(B.38)

(B.39)

(B.40)

Similarly, it follows from (4.39), (B.34), (B.35), (B.13)-(B.15), (B.17) and (B.IS) that

Hb¢((_CD, 2(J}) = n_J ) = 2[(M/_cc(_{J))@ H -(B_cc]5(J))0_] (B.41)

40



where

Mncc _=R2O, - k_ - BnccP

Bxcc _- [_ + B,D.

(B.42)

(B.43)

(B._)

Finally, substituting (B.33)-(B.35) into (4.40)-(4.48), using (B.13)-(B.18) and recalling the

definitions (B.36), (B.37) and (B.41) gives the following.

Derivations with respect to ae,k t

_ac,kt

aa¢,kt

a_c, _ n(yl) (B.47)
_ac,kt

Derivations with respect to bc,kt

@HA. = H(AD
0b.,kt

OHB°

Obe,kt

BHc_

c%_,kt

_ H_,_- 2(b_(_-')._(:, k))y_(t,:)

H (_) 2D(_.,:)T(po(k,:)(_2 H)

(a.4s)

(B.49)

(B.50)

Derivations with respect to cc,kt

OH A. -- HLj_
_Cc,kt

OHB. _ H(B_I)_ 2([_20_.(t,:).)DC:,k)T
_Cc,kt

OHc, _ H(j) - 2R2(:,k)(02(t,:)_)
_Cc, M C,

(B.s])

(B.52)

(B.53)

4_
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Abstract

It has been observed numerically that low authority LQG compensators are often nearly non-

minimal. However, to date a rigorous justification for this phenomenon has not yet been established.

This paper helps provide the needed theoretical foundation. In particular, it is shown that for both

continuous-time and discrete-time stable systems, by proper choice of the structure of the design
weights, the corresponding LQG compensator becomes nonminimal as the control authority is de-

creased. Thus, the results provide a partial explanation of why the suboptimal controller reduction

methods tend to work best at low control authority. The results also can be used as rigorous guide-

lines to efficiently initialize homotopy algorithms for directly synthesizing optimal reduced-order
controllers. The restriction to stable systems is not necessarily limiting since the freedom involved

in defining a homotopy allows this assumption to always be satisfied.

This research was supporled in part by tile National Science Foundation under Grants ECS-

9109558 and ECS-9350181. the National Aeronautical and Aerospace Adminislration under Con-
!rac_ NAS_-38575. and tile Air Force Office of Scientific Research under Contracl F49620-91-('-0019.





1. Introduction

The development of linear-quadratic-gaussian (LQG) theory [1-3] was a major breakthrough in

modern control theory since it provides a systematic way to synthesize high performance controllers

for nominal models of complex, multi-input multi-output systems. However, one of the well known

deficiencies of an LQG compensator is that its minimal dimension is usually equal to the dimension

of the design plant. This has led to the development of techniques to directly synthesize optimal

reduced-order controllers [4-17] and techniques to synthesize reduced-order approximations of the

optimal fuU-order compensator (i.e., controller reduction methods) [18-23].

The controller reduction methods almost always yield suboptimal (and sometimes destabilizing)

reduced-order control laws since an optimal reduced-order controller is not usually a direct function

of the parameters used to compute or describe the optimal full-order controller. Nevertheless, these

methods are computationMly inexpensive and sometimes do yield high performing and even nearly

optimal control laws. An observation that holds true about most of these methods is that they

tend to work best at low control authority [17, 21, 23]. However, to date no rigorous explanation

has been presented to explain this phenomenon.

One of the purposes of this paper is to provide a partial explanation as to why the suboptimal

projection methods tend to work at low control authority. The discussion here focuses on stable

systems. It is shown that if the state weighting matrix R1 or disturbance intensity (or covariance

for discrete systems) V1 has a specific structure in a basis in which the A matrix is upper or lower

block triangular, respectively, then at low control authority the corresponding LQG compensator

is nearly nonminimal and can hence be easily reduced to a nearly optimal reduced-order controller.

The conditions presented for R1 and II1 often are satisfied or nearly satisfied in practice. Hence, for

stable systems the results proved in this paper do offer one explanation of why suboptimal controller

reduction methods often provide nearly optimal control laws at low authority. The results can also

be used as guidelines for choosing R1 and V1 such that suboptimal controller reduction methods

yield "good" reduced-order controllers.

Suboptimal controller reduction methods can be used to initialize algorithms for synthesizing

optimal reduced-order controllers. Of particular interest are the homotopy algorithms of [11.15-17]

since the3 are based on allowing the plant and weights defining an optimization problem to vary

as a function of the homotopy parameter A E [0.1]. These homotop.v algorithms rely on choosing

the initial planl and weights so 1hat the corresponding LQG compensator is easily reduced to a



nearlyoptimal reduced-ordercompensator of the desired dimension. Hence, the results presented

here provide some rigorous guidelines for initializing these algorithms. Note that tile restriction to

stable systems is not necessarily limiting since the freedom involved in defining a homotopy allows

this assumption to be satisfied. However, future work will focus on theory that directly applies to

unstable systems.

Notation

IR, IR _x', ]R _

IE

X_>O,X>O

0,-x,, 0,-

/,.

vec(-)

realnumbers, r x s realmatrices,IRrxl

expected value

matrix X isnonnegativedefinite,X ispositivedefinite

r x s zeromatrix,r × r zeromatrix

r x r identitymatrix

the invertiblelinearoperator definedsuch that

vec S _ [sI s T''' sT] T, S E IRTM,

where s# E IRp denotes the jth column of S.

o Low Authority LQG Compensation: Continuous-Time Systems

Consider the nth-order linear time-invaxiant plant

_(t) = Az(t) + Bu(t) + Dlw(t),

_(t) = C_(t) + D2w(t),

(2.1a)

(2.1b)

where (A,B) is stabilizable, (A,C) is detectable, z E IR",u E IR_,9 E IR t, and w E IR d is a

standard white noise disturbance with intensity ld and rank D_ = 1. The intensities of Dlw(t) and

D_w(t) are thus given, respectively, by V1 _- DID T > 0, and V2 a__D2DT > 0. For convenience, we

assume that V12 g D1D T = 0, i.e., the plant disturbance and measurement noise are uncorrelated.

Then, the LQG compensator

_c(t) = Acxc(t) + Bey(t),

u(t) = -Ccxc(t),

(2.2a)

(2.2b)

for the plant (2.1) minimizing the steady-state quadratic performance criterion

t

J(Ac. Bc.('_) _= t-_!lira 1_/[zT(s)Rlx(s ) + uT(s)R_u (
o

_)]d_. (2.3)

:2



where R1 _> 0 and R2 > 0 are the weighting matrices for the controlled states and controller input,

respectively, is given by:

Ac = .4 - EP - QE, (2.4(2)

Bc = QcTv_ -1, Cc = R_I BT p, (2.4b, c)

where E & BR_IB T, E a__cTv_.IC ' and P and Q are the unique, nonnegative-definite solutions

respectively of

0 = ATp + PA + R1 - PEP, (2.5)

0 = AQ + QA T + V1 - QEQ. (2.6)

Furthermore, the "shifted" observability and controllability grammians [18, 24] of the compensator,

P and Q, are the unique, nonnegative-definite solutions respectively of

0 = (A - Q_)Tp + P(A - QE) + PEP, (2.7)

0 = (A - EP)0 + 0(A - EP) T + QEQ. (2.8)

Although a cross-weighting term of the form 2xT(t)R12u(t) can also be included in (2.3), we shall

not do so here to facilitate the presentation. The magnitudes of R2 and I/2 relative to the state

weighting matrix Rt and plant disturbance intensity V1 govern the regulator and estimator au-

thorities, respectively. The selection of R_ and 1/2 such that IIR211>> I[gll[, or II_%[I>> [[V_ll,

yields a low authority compensator. It has been observed numerically that low authority LQG

compensators are often nearly nonminimal [17, 21]. This section provides a rigorous justification

for this observation when the open-loop plant is stable and (A, R1) or (A, V1) have a particular

structure. In order to prove this result, we first exploit some interesting structural properties of

the solutions of the Riccati equations and Lyapunov equations assuming the coefficient matrix A

and the constant driving term R1 have certain partitioned forms.

Lemma 2.1. Suppose

A21 As ' B2 '

where A1, R1,1 6 IR TM x,_,, B1 E IR'_"×"_, R1,1 > 0.

R1= [_,1 0 ] (2.9a, b,c_
0nln r

(i) If (A,B) and (A1, BI) are stabilizable, then the unique, nonnegative-definite solution of

the Riccati equation:

0 = A I P + PA + R1 - PBBTp. (2.10)



is given by

0 On-., '

where the n. x n_ matrix PI is the unique, positive-definite solution of

0 = ATp1+ FlAx + Rx,_- P_BIB_PI.

(2.11)

(2.12)

(ii) If A is asymptotically stable, then the unique, nonnegative-definite solution of the Lyapunov

equation:

0 = ATp + PA + R_, (2.13)

is given by

p= [P1 0 ] (2.14)0 O.-n, '

where the n. x n_ matrix P1 is the unique, positive-definite solution of

0 = ATp_ + PtA1 + Rx,_. (2.15)

Proof.

(i) Since (A, B) is stabilizable and R1 > 0, it follows from Theorem 12.2 of [25] that there

exists a unique, nonnegative-definite solution of the Riccati equation (2.10). Similarly, the

assumptions that (A1,B1) is stahillzable and R1,1 > 0 imply that there exists a positive-

definite matrix P1 satisfying the Riccati equation (2.12). Using (2.12), it follows by con-

struction that (2.11) is the solution of (2.10).

(ii) This is a special case of the Riccati equation of property (i). []

The following lemma states the dual of Lemma 2.1 if the coefficient matrix A is upper block

triangular and V1 is upper block diagonal

Lemma 2.2. Suppose

[_i A,2 1 [V_),, 0 ]A= AsJ' C=[C_ C:], VI= 0._., '

where A1,Vla E IR "'xn', C1 E IR t×"', I"1.1 > 0.

(2.16a, b, c)

(i) If(A, C)and (AI, C1) are detectable, then the unique, nonnegative-definite solution of the

Riccati equation:

O = AQ + QA "r + I"1 - QCTCQ, (2.17)



is given by

o ]
On_ELr

where the nr x nr matrix Ol is the unique, positive-definite solution of

0 = AIQ1 + QIA T + V1,1 - QICTIC1Q1. (2.19)

(ii) If A is asymptotically stable, then the unique, nonnegative-definite solution of the Lyapunov

equation:

0 = AQ + QA T + V1,

is given by

(2.2o)

where the nr x n_ matrix Q1 is the unique, positive-definite solution of

0 = A1Q1 + Q1A T + V1,1. (2.22)

Proof. The proof is dual to the proof of Lemma 2.1. []

The following theorem shows that, with proper choice of the weighting matrices, a low authority

LQG controller for a stable plant is nearly nonminimal. The proof of this theorem relies on the

above two lemmas.

Theorem 2.1. Consider the plant given by (2.1).

(i) Suppose

A= A_1 A2 ' 0,_-n, '

where A1, R1,1 E IR '_rx,_r R1.1 > 0, and A is asymptotically stable. Let

V2 _ 3V2 (2.24)

where I:_ is some finite, positive-definite matrix and 3 E IR is a positive scalar. Then

lira rank (_)P) _< lim rank /5 _< n_, (2.25)
3-c¢ _-oG

where Q and /5 are the shifted controllability and observability grammians of the cor-

responding I.QG compensator, satisf.ving (2.8) and (2.7). respectively. Equivalently. for
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> 0, there exists N such that for all/3 > N, A,_,+x < _An,, where Ai represents the i th

eigenvalue of {_/3 and A1 _> A2 _> ... _> Ai _> Ai+l... _> 0.

( ii) Suppose

where AI,Vz,1 E IRn'x"", VI.z> 0,and A isasymptoticallystable.Let

R2 =_aJ_2, (2.27)

where 1_2 is some finite, positive-definite matrix and a E IR is a positive scalar. Then

lim rank (QP) _< lim rank (__<n_, (2.28)
O-=* OO _ "-* OO

where (_ and ]3 are the shiftedcontrollabilityand observabilitygrammians of the cor-

responding LQG compensator, satisfying(2.8)and (2.7),respectively.Equivalently,for

> 0, there existsN such that forallc_> N, An,+1 < 6An,, where Ai representsthe ith

eigenvalueof (_j5and AI _>As _ ..._>Ai _ Ai+1..._>0.

Proof.

(2.23) and that A is asymptotically stable imply that (.4, B) and (AI, B1) are both stabiliz-

able. Thus, it follows from property (i) of Lemma 2.1 that the unique, nonnegative-definite

solution P of the Riccati equation (2.5) has the structure given by (2.11), which implies

that

Thus, noting the specialpartitionedstructuresin (2.29)and (2.23),and that A isasymp-

toticallystable,itfollowsfrom property(ii)of Lemma 2.1that thereexists

0 0,_n, '

which is the unique, nonnegative-definite solution of

0 = AT/_0 + [:'oA + pvp,

where nr x 7*r matrix /51 is the unique, nonnegative-definite solution of

(2.31)

o = A Pl + P,A + P,'-:,P1.



Next, computing (2.31) - (2.7) and using (2.24), yields the following modified Lyapunov

equation:

where

0 = ATAP + APA +/3-1[(CT ' IcQP) + (cT 2-1CQP)T]. (2.32)

A/5 _ /50 -/5. (2.33)

Since A is asymptotically stable and Q and/5 satisfy (2.6) and (2.7), respectively, Q and

/5 are bounded for all ft. Thus, (2.32) implies that lim_--.oo IIA/511- 0. Hence, for e > 0,

there exists M such that for all/3 > M, IIA/511 < _. Using (2.33), it follows that

lim /5 = /5o = [ /5_ 00] (2.34)_-.oo 0 "

Thus, lime_,¢ rank (Q/5) _< lim_...oo rank t5 = nr, which implies the following inequali-

ties of the eigenvaiues of 0/5- Suppose A, represents an eigenvalue of Q/5 and A1 >_ A2... _>

Ai _> Ai+I... _> 0. Then, for/5 > 0, there exists N such that for all /_ > N, An,+1 < _A,_.

(ii) The proof is dual to the proof of (i). []

Remark 2.1. Theorem 2.1 provides two ways of weighting matrices selection resulting in a

nearly nonminimal, low authority LQG compensator for a stable plant. The first approach starts

by transforming the plant A into coordinates such that A has the representation as in equation

(2.23a) after transformation. Then select the weighting matrix R1 with the partitioned form as in

(2.23b) and with rank R1 = n_. By decreasing the authority of the compensator, or, equivalently,

increasing I[lJ_[[ or/_, the LQG compensator approaches nonminimality with minimal dimension of

n_. Using a dual approach, with A and V1 partitioned as in (2.26), by increasing IIR2ll or a, the

resulting LQG compensator approaches nonminimMity.

Remark 2.2. Note that if A is in a modal form, then it satisfies both (2.23a) and (2.26a) of

Theorem 2.1. In this case, R1 given by (2.23b), describes a state weighting matrix in which only

the states pertaining to selected modes are weighted. Similarly, V1 given by (2.26b) describes a

disturbance that excites only certain modes. It is not uncommon for these conditions to be satisfied

or nearly satisfied in practice.

Remark 2.3. The suboptimal controller reduction methods of [18-23] characterize the redu-

ced-order controller by a projection or some other type of reduction of the LQG controller, h

has been observed _hat _hese suboptimal reduced-order controllers for the low-authorit.v contro!



problem will' yield virtually the same cost as the LQG controller. According to Theorem 2.1, for

a stable plant and with proper choice of the weighting matrices, the LQG controller for a low

authority control problem is nearly nonminimal, which provides a theoretical justification for the

above observation.

Remark 2.4. The homotopy algorithms for reduced-order dynamic compensation problems

developed in [15-17] are based on allowing the plant and weights defining an optimization problem

to vary as functions of the homotopy parameter A E [0,1]. In particular, it is assumed that

where

and LR,0 and LR,! satisfy

.and

where

and Lv, o and Lv,! satisfy

A(A)B A)]= Bo]+A([A! Ao0 "0°]"
[ R,(_) R,_(_)1
RT2(A) R_(A)J = LR(A)LT(A)'

LR(A) = LR,0 + A(LR,y - LR,0),

trR,.oR,_.ol LR,!LT,y r R,,I R,2,I]L R,oL _,o = R,_.o_R_.o]' = LR_.! R_.!j'

VI(A) V12(A)] = Lv(A)LTv(A),US(_) V_(_)

Lv(A) = Lv, o + A(Lv,! - Lv, o),

T r.0 V12,0] Lv,!LTy [VI,! V12,I]Lv'°Lv'° = [vg,0 V_.oj' = vg,! v_,!

Note that the above equations imply that A(0) = A0, B(0) = B0, etc ... which are the ini-

tial set of system matrices and that A(1) = A!, B(1) = By, etc ... which are the final and

given system matrices, To initialize the homotopy algorithm efficiently, the designer can choose

(A0, B0, Co, R1.0, Rl._,0, R.%o, V1,0, I,_:.0, V_,0), to correspond to a low authority control problem with

stable open-loop plant as stated in Theorem 2.1, for which a nearly optimal reduced-order controller

may be easily obtained by balanced controller reduction [18] or an alternative suboptimal controller

reduction method [19-23].



3. Low Authority LQG Compensation: Discrete-Time Systems

In this section, we consider the discrete-time counterpart of the previous section. In particular,

a rigorous justification is provided for a nearly nonminimal low authority discrete-time LQG com-

pensator when the open-loop plant is stable and certain weighting matrix has specific structure.

Consider the nth-order linear, discrete time-invariant plant

x(k + 1) = Ax(k) + B.(k) + Dl,_(k),

_(k) = C_(k) + D2w(k),

where (A,B) is stabilizable, (A,C) is detectable, x E IRn,u E IR'_,y E IR l, and w E IRd is a

standard white noise disturbance with covariance ld and rank D2 = I. The covariances of Dlw(k)

and D2w( k ) are thus given, respectively, by V1 _- D_ D T >_ O, and V2 _ D2 D T > 0. For convenience,

once again we assume that V12 _ D1D T = 0. Then, the LQG compensator

xc(k + a) = A:_(k) + Boy(k),

u(k) = -C¢xc( k ) - Dcy(k ),

for the plant (3.1) minimizing the steady-state quadratic performance criterion

J(A_, Be, Co, De) _ lim IE[xT(k)R,x(k) + uT(k)R2u(k)],
k_oo

(3.3)

where R1 _> 0 and R2 > 0 are respectively the weighting matrices for the controlled states and

controller input, is given by [26]:

Ac = A - Q,,t_-a'C - BR_P,,, (3.4a)

Bc = Q_I_-_', Cc = R_P,,, D_ = R_BTpAQCTV2-_ ', (3.4b, c,d)

where

Q_ _- AQC T, Pa _- B'r PA. l_,_ _- 1_ + CQC T, R2a _- R2 + B'r pB, (3.5,6,7.8)

and P and Q are the unique, nonnegative-definite solutions respectively of

P= A "rPA + R1- pT Ry.,_ Po,

Q = AQ.4 "r + I_ _ Qol.._Qo.T

(3.9)

(3.10)

!D



Furthermore, the "shifted" observability and controllability grammians of the compensator,/5 and

0, satisfy

P = (A - Q,,V_IC)T/5(A - QaV_xC) + (Pa - R2aDcC)TR_(PG - R2aDcC), (3.11)

0 = (A - BR_Pa)O(A - BR_P,,) T + (Qa - BDcV2a)V_I(Qa - BDcV2s) T,

and/5 and 0 are nonnegative definite.

(3.12)

As in the continuous-time case a cross-weighting term of the form 2xT(k)Rx2u(k) can also be in-

cluded in (3.3), we shall not do so here to facilitate the presentation. Similar to the continuous-time

compensation problem, the magnitudes of R2 and 1/2 relatively to R1 and V1 govern the regulator

and estimator authority, respectively. The following theorem is the discrete-time counterpart of

the continuous-time result stated in Theorem 2.1. It provides a rigorous justification for a nearly

nonminimal low authority discrete-time LQG compensator when the open-loop plant is stable and

R1 or _ has certain structure.

Theorem 3.1. Consider the plant described in (3.1).

(i) Suppose

[ ] [Rl,,0]A, 0 R1 = (3.13a, b)
A= A21 As ' 0 0n-,,. '

where A1, Ra,1 E IRn" xn., R1,1 > 0, and A is asymptotically stable. Let

112 _/3V_, (3.14)

where 1?_ is some finite, positive-definite matrix and/3 E IR is a positive scalar. Then

lira rank (0t 5) _< lim rank/5 _< n_, (3.15)
_-,oo 0--.oo

where 0 and P are the shifted controllability and observability grammians of the corre-

sponding LQG compensator, satisfying (3.11) and (3.12), respectively. Equivalently, for

b > 0, there exists N such that for all/3 > N, An,+1 < SAn,, where Ai represents the ith

eigenvalue of QP and A1 _> A__>_ ... >_ Ai _> Ai+l... > 0.

(ii) Suppose

,;=[,.,,,o]0 .42 0 0,_,,, " i3.16a, b)

10



whereA1. V1,1 E IR a" ×'_', V1.1 > 0, and A is asymptotically stable. Let

R2 g ak2, (3.17)

where t}2 is some finite, positive-definite matrix and a E IR is a positive scalar. Then

lira rank (t_P) _< lira rank _) _< nr, (3. la)
_t --"*OO _ -'_OO

where 0 and P are the shifted observability and controllability grammians of the corre-

sponding LQG compensator, satisfying (3.11) and (3.12), respectively. Equivalently, for

6 > 0, there exists N such that for all a > N, A,_,+1 < 6A,_,, where Ai represents the i t_

eigenvalue of QP and A1 _> A2 _> ... _> Ai _> Ai+l... _> 0.

Proof. The proof is similar to the proof of Theorem 2.1. []

4. Numerical Illustrative Examples

To illustrate the proper choices of the weighting matrices resulting in a nearly nonminimal,

low authority LQG compensator for a stable continuous-time plant, consider a simply supported

beam with two collocated sensor/actuator pairs. Assuming the beam has length 2 and that the

55 and b = 46sensor/actuator pairs are placed at coordinates a = 1T"-_, _, a continuous-time model

retaining the first five modes is obtained:

= Ax + Bu + Dlw, y = Cx + D2w,

where

[o :][0 :][0 01.][0 01.][0 1]A=block-diag( - 01 ' -16 - 04 ' -81 - 09 ' -256 - 16 ' -625 -0.25 )'

° 0 0 0 0-0.8439 0 -0.9054 0 -0.1275 0 0.7686 0 0.9522 J ' C=B'r"

The noise intensities are V1 _= D1D T = 0.111o and V2 _= D2D T = _I2, and it is assumed that V12 "

D1D T = 0. The design objective is to minimize the continuous-time cost J = limt--.oo IE[zTRlz +

uTR_u], where R2 = aI2. Note that the magnitude of the positive real numbers a and _ are the

indicators of the controller authority level. For this particular plant, A has the representation as

in (2.23a) and (2.26a) with A12 = 0 and A21 = 0, respectively. Here, we illustrate the results of

property (i) of Theorem 2.1 for the cases of nr = 2 and nr = 6. Setting a = 0.1, by selecting the
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weightingmatrix Rl = [I_). _] , and increasing jg (hence, decreasing the compensator authority),

the resulting LQG compensator approaches nonminimMity with minimal dimension of n, or, equiv-

alently, ),,,r+_(O.P) ...+ 0 where Ai is the sorted (in descending order) ith eigenvalue of (_P. Figure 1
_,,(OP)

shows the ratiocurve for nr = 2 with _ E (0.01,0.1,1,10,102,10a,104,10s,106).The curve dearly

indicatesthat the ratiodecreasesas/_increases.To illustratethatsuboptimal controllerreduction

methods yieldnearlyoptimal reduced-ordercompensators forlow authoritycontrolproblems,Fig-

ure 1 alsoshows the norm of the costgradientof the 2hal-ordercontrollerobtained by balancing.

The cost gradient is defined as [(vec oJ x'r (vec oJ xT (vec oJ xT 1Tj _ j _ j j . The costgradientcurve

indicatesthe balanced controllerapproaches the optimal reduced-ordercompensator as _ increases,

or as the controlauthoritydecreases.Figure2 shows the eigenvalueratioofthe LQG controllerfor

nr = 6 and the norm of the costgradientof the corresponding6th-orderbalanced controller.

Conversely,ifthe weightingterm RI forthe above example doesnot have the structuregivenby

(2.23b),decreasingthe controllerauthority(i.e.,increasing_/)may not yielda nearlynonminimal

LQG compensator. As a result,the norm of the costgradient of the corresponding 2hal-order

balanced controllerdoes not approach zero as the controlauthoritydecreases.This isillustrated

in Figure 3 for n_ = 2 and R1 = 110. Note that for this particular example, at _ = 0.01 the

balanced controller destablizes the closed-loop system and hence the norm of the cost gradient

becomes infinite.

5. Conclusion

By exploiting structural properties of the solutions of the Riccati equations and Lyapunov

equations, this paper shows that for both continuous-time and discrete-time stable systems, if the

coefficient matrix A and driving weighting term R1 (or V1) have specific structures, the corre-

sponding LQG compensator becomes nonminimal as the control authority is decreased. This result

provides a partial explanation of why suboptimal projection methods tend to work best at low

authority. This paper also establishes some rigorous guidelines to initiMize homotopy algorithms

for directly synthesizing optimal reduced-order controllers. In particular, to initialize the homotopy

algorithm efficiently the designer can choose the plant and weighting matrices to correspond to a

low authority control problem with stable open-loop systems as stated in Theorem 2.1 or 3.1. In

this case, a nearly optimal reduced-order controller may be easily obtained using an appropriate

suboptimal controller reduction method such as balancing since the resulting LQG controLler is

12



nearlynon-minimal.Theseresultsareclearlyillustratedby numerical examples.

Conversely, if the structure of the plant and weighting matrices do not satisfy the conditions

specified in Theorem 2.1 or 3.1, the resulting LQG compensator is not necessarily nearly minimal

even at low control authority. In this case, reduced-order controllers obtained by suboptimal

projection methods may not be nearly optimal even at low authority. This result is illustrated in

the last example with a reduced-order controller obtained by balancing.
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